首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For a prime p, we give a construction of perfect nonlinear functions from ? to ? when either of the following conditions holds: (1) np; (2) n<p, and n is a composite number or is the sum of positive composite numbers. It follows that when n≥12, there is a perfect nonlinear function from ? to ? for any prime p. © 2009 Wiley Periodicals, Inc. J Combin Designs 17: 229‐239, 2009  相似文献   

2.
We construct cyclically resolvable (v, 4, 1) designs and cyclic triple whist tournaments TWh(v) for all v of the form 3pp + 1, where the pi are primes ≡ 1 (mod 4), such that each P1 ? 1 is divisible by the same power of 2. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
Let ex2(n, K) be the maximum number of edges in a 2‐colorable K‐free 3‐graph (where K={123, 124, 134} ). The 2‐chromatic Turán density of K is $\pi_{2}({K}_{4}^-) =lim_{{n}\to \infty} {ex}_{2}({n}, {K}_{4}^-)/\left(_{3}^{n}\right)Let ex2(n, K) be the maximum number of edges in a 2‐colorable K‐free 3‐graph (where K={123, 124, 134} ). The 2‐chromatic Turán density of K is $\pi_{2}({K}_{4}^-) =lim_{{n}\to \infty} {ex}_{2}({n}, {K}_{4}^-)/\left(_{3}^{n}\right)$. We improve the previously best known lower and upper bounds of 0.25682 and 3/10?ε, respectively, by showing that This implies the following new upper bound for the Turán density of K In order to establish these results we use a combination of the properties of computer‐generated extremal 3‐graphs for small n and an argument based on “super‐saturation”. Our computer results determine the exact values of ex(n, K) for n≤19 and ex2(n, K) for n≤17, as well as the sets of extremal 3‐graphs for those n. © 2009 Wiley Periodicals, Inc. J Combin Designs 18: 105–114, 2010  相似文献   

4.
Let p = 2kt + 1 be a prime where t>1 is an odd integer, k ≥ 2. Methods of constructing a Z-cyclic triple whist tournament TWh(p) are given. By such methods we construct a Z-cyclic TWh(p) for all primes p,p≡1(mod 4), 29 ≤ p ≤ 16097, except p = 257. Let pi = 2ti + 1,q = 2t0 + 3 be primes where ti;i = 0,1,…, n are odd > 1 and ki are integers ≥2. We prove that if Z-cyclic TWh(pi) and TWh(q + 1) exist then Z-cyclic TWh(∏ni = 1 pi) and TWh(qni = 1 pi + 1) exist. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
In this paper we establish necessary and sufficient conditions for decomposing the complete multigraph λKn into cycles of length λ, and the λ‐fold complete symmetric digraph λK into directed cycles of length λ. As a corollary to these results we obtain necessary and sufficient conditions for decomposing λKn (respectively, λK) into cycles (respectively, directed cycles) of prime length. © 2009 Wiley Periodicals, Inc. J Combin Designs 18: 85–93, 2010  相似文献   

6.
When the number of players, v, in a whist tournament, Wh(v), is ≡ 1 (mod 4) the only instances of a Z-cyclic triplewhist tournament, TWh(v), that appear in the literature are for v = 21,29,37. In this study we present Z-cyclic TWh(v) for all vT = {v = 8u + 5: v is prime, 3 ≤ u ≤ 249}. Additionally, we establish (1) for all vT there exists a Z-cyclic TWh(vn) for all n ≥ 1, and (2) if viT, i = 1,…,n, there exists a Z-cyclic TWh(v… v) for all ?i ≥ 1. It is believed that these are the first instances of infinite classes of Z-cyclic TWh(v), v ≡ 1 (mod 4). © 1994 John Wiley & Sons, Inc.  相似文献   

7.
Two odd primes p1 = 2 u1 + 1, p2 = 2 u2 + 1, u1, u2 odd, are said to be noncompatible if b1b2. Let bi ≥ 2, i = 1, 2 and denote the set {(p1, p2): {p1, p2} are noncompatible, pi < 200} by NC. In Part 1 of this study we established the existence of Z-cyclic triplewhist tournaments on 3p1p2 + 1 players for all (p1, p2) ϵ NC. Here we extend these results and establish Z-cyclic triplewhist tournaments on 3p1p2 + 1 players for all (p1, p2) ϵ NC and for all α1 ≥ 1, α2 ≥ 1. It is believed that these are the first infinite classes of such triplewhist tournaments. © 1997 John Wiley & Sons, Inc. J Combin Designs 5: 189–201, 1997  相似文献   

8.
The existence of Hadamard difference sets has been a central question in design theory. Reversible difference sets have been studied extensively. Dillon gave a method for finding reversible difference sets in groups of the form (C)2. DRAD difference sets are a newer concept. Davis and Polhill showed the existence of DRAD difference sets in the same groups as Dillon. This article determines the existence of reversible and DRAD difference sets in groups of the form (C)3. These are the only abelian 2‐groups outside of direct products of C4 and (C)2 known to contain reversible and DRAD difference sets. © 2011 Wiley Periodicals, Inc. J Combin Designs 20:58–67, 2012  相似文献   

9.
This article deals with the LORENTZ-MARCINKIEWICZ operator ideal ?? generated by an additive s-function and the LORENTZ-MARCINKIEWICZ sequence space λq(φ). We give eigenvalue distributions for operators belonging to ?? (E, E) and we show the interpolation properties of ??-ideals. Furthermore, we study certain SCHAUDER bases in ?? (H, K), H and K Hilbert spaces.  相似文献   

10.
We prove that, with the single exception of the 2‐group C, the Cayley table of each Abelian group appears in a face 2‐colorable triangular embedding of a complete regular tripartite graph in an orientable surface. © 2009 Wiley Periodicals, Inc. J Combin Designs 18: 71–83, 2010  相似文献   

11.
We prove that if there exists a t − (v, k, λ) design satisfying the inequality for some positive integer j (where m = min{j, vk} and n = min {i, t}), then there exists a t − (v + j, k, λ ()) design. © 1999 John Wiley & Sons, Inc. J Combin Designs 7: 107–112, 1999  相似文献   

12.
By using the LITTLEWOOD matrices A2n we generalize CLARKSON' S inequalities, or equivalently, we determine the norms ‖A2n: l(LP) → l(LP)‖ completely. The result is compared with the norms ‖A2n: ll‖, which are calculated implicitly in PIETSCH [6].  相似文献   

13.
For graphs A, B, let () denote the number of subsets of nodes of A for which the induced subgraph is B. If G and H both have girth > k, and if () = () for every k-node tree T, then for every k-node forest F, () = (). Say the spread of a tree is the number of nodes in a longest path. If G is regular of degree d, on n nodes, with girth > k, and if F is a forest of total spread ≤k, then the value of () depends only on n and d.  相似文献   

14.
The paper deals with sharp embeddings of the spaces B and F into rearrangement-variant spaces and related Hardy inequalities. Here (1/p, s) belongs to the interior of the shaded invariant spaces region in the Figure  相似文献   

15.
This paper is a continuation of [8]. We study weighted function spaces of type B and F on the Euclidean space Rn, where u is a weight function of at most exponential growth. In particular, u(χ (±|χ|) is an admissible weight. We deal with atomic decompositions of these spaces. Furthermore, we prove that the spaces B and F are isomorphic to the corresponding unweighted spaces B and F.  相似文献   

16.
We say that two graphs G and H with the same vertex set commute if their adjacency matrices commute. In this article, we show that for any natural number r, the complete multigraph K is decomposable into commuting perfect matchings if and only if n is a 2‐power. Also, it is shown that the complete graph Kn is decomposable into commuting Hamilton cycles if and only if n is a prime number. © 2006 Wiley Periodicals, Inc. J Combin Designs  相似文献   

17.
This paper is the continuation of [17]. We investigate mapping and spectral properties of pseudodifferential operators of type Ψ with χ χ ? ? and 0 ≤ γ ≤ 1 in the weighted function spaces B (?n, w(x)) and F (?n, w(x)) treated in [17]. Furthermore, we study the distribution of eigenvalues and the behaviour of corresponding root spaces for degenerate pseudodifferential operators preferably of type b2(x) b(x, D) b1(x), where b1(x) and b2(x) are appropriate functions and b(x, D) ? Ψ. Finally, on the basis of the Birman-Schwinger principle, we deal with the “negative spectrum” (bound states) of related symmetric operators in L2.  相似文献   

18.
We consider a domain Ω in ?n of the form Ω = ?l × Ω′ with bounded Ω′ ? ?n?l. In Ω we study the Dirichlet initial and boundary value problem for the equation ? u + [(? ? ?… ? ?)m + (? ? ?… ? ?)m]u = fe?iωt. We show that resonances can occur if 2ml. In particular, the amplitude of u may increase like tα (α rational, 0<α<1) or like in t as t∞∞. Furthermore, we prove that the limiting amplitude principle holds in the remaining cases.  相似文献   

19.
We study the following initial and boundary value problem: In section 1, with u0 in L2(Ω), f continuous such that f(u) + ? non-decreasing for ? positive, we prove the existence of a unique solution on (0,T), for each T > 0. In section 2 it is proved that the unique soluition u belongs to L2(0, T; H ∩ H2) ∩ L(0, T; H) if we assume u0 in H and f in C1(?,?). Numerical results are given for these two cases.  相似文献   

20.
In a search for triangle-free graphs with arbitrarily large chromatic numbers, Mycielski developed a graph transformation that transforms a graph G into a new graph μ(G), we now call the Mycielskian of G, which has the same clique number as G and whose chromatic number equals χ(G) + 1. Chang, Huang, and Zhu [G. J. Chang, L. Huang, & X. Zhu, Discrete Math, to appear] have investigated circular chromatic numbers of Mycielskians for several classes of graphs. In this article, we study circular chromatic numbers of Mycielskians for another class of graphs G. The main result is that χc(μ(G)) = χ(μ(G)), which settles a problem raised in [G. J. Chang, L. Huang, & X. Zhu, Discrete Math, to appear, and X. Zhu, to appear]. As χc(G) = and χ(G) = , consequently, there exist graphs G such that χc(G) is as close to χ(G) − 1 as you want, but χc(μ(G)) = χ(μ(G)). © 1999 John Wiley & Sons, Inc. J Graph Theory 32: 63–71, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号