首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Applications of laser flash photolysis techniques are illustrated using three specific cases among many photoprocesses involving transition metal polypyridyl complexes (LL = bpy, phen or related ligands): dynamics of photoinduced formation of complexes of the type M(CO)4(LL), where M = Mo0, Cr0 or W0; dynamics of photosubstitution reactions of Ru(LL) 3 2 + and photoredox reactions of MLCT excited states of RuII(LL) 3 2+ and [ReI(CO)3(Cl)(LL)].  相似文献   

2.
The photophysical and electron transfer properties of the lowest excited state of nine ruthenium (polypyridine) complexes have been characterized. The complexes studied are Ru (bpy)3-n (LL)2+n, where n varies from 0 to 3, and LL is 4, 4′-di-t-butyl-2,2′-bipyridine (DTB-bpy), 3, 3′-dimethyl-2, 2′-bipyridine (DM-bpy), or a 2, 2′-diquinolyl derivative (DMCH). The results obtained show that the Ru (bpy)2(DMCH)2+ complex is expected to be a more efficient mediator than Ru (bpy)2+3 in the water-splitting reaction by solar energy.  相似文献   

3.
Reactions of [Ru{C=C(H)-1,4-C6H4C≡CH}(PPh3)2Cp]BF4 ([ 1 a ]BF4) with hydrohalic acids, HX, results in the formation of [Ru{C≡C-1,4-C6H4-C(X)=CH2}(PPh3)2Cp] [X=Cl ( 2 a-Cl ), Br ( 2 a-Br )], arising from facile Markovnikov addition of halide anions to the putative quinoidal cumulene cation [Ru(=C=C=C6H4=C=CH2)(PPh3)2Cp]+. Similarly, [M{C=C(H)-1,4-C6H4-C≡CH}(LL)Cp ]BF4 [M(LL)Cp’=Ru(PPh3)2Cp ([ 1 a ]BF4); Ru(dppe)Cp* ([ 1 b ]BF4); Fe(dppe)Cp ([ 1 c ]BF4); Fe(dppe)Cp* ([ 1 d ]BF4)] react with H+/H2O to give the acyl-functionalised phenylacetylide complexes [M{C≡C-1,4-C6H4-C(=O)CH3}(LL)Cp’] ( 3 a – d ) after workup. The Markovnikov addition of the nucleophile to the remote alkyne in the cations [ 1 a–d ]+ is difficult to rationalise from the vinylidene form of the precursor and is much more satisfactorily explained from initial isomerisation to the quinoidal cumulene complexes [M(=C=C=C6H4=C=CH2)(LL)Cp’]+ prior to attack at the more exposed, remote quaternary carbon. Thus, whilst representative acetylide complexes [Ru(C≡C-1,4-C6H4-C≡CH)(PPh3)2Cp] ( 4 a ) and [Ru(C≡C-1,4-C6H4-C≡CH)(dppe)Cp*] ( 4 b ) reacted with the relatively small electrophiles [CN]+ and [C7H7]+ at the β-carbon to give the expected vinylidene complexes, the bulky trityl ([CPh3]+) electrophile reacted with [M(C≡C-1,4-C6H4-C≡CH)(LL)Cp’] [M(LL)Cp’=Ru(PPh3)2Cp ( 4 a ); Ru(dppe)Cp* ( 4 b ); Fe(dppe)Cp ( 4 c ); Fe(dppe)Cp* ( 4 d )] at the more exposed remote end of the carbon-rich ligand to give the putative quinoidal cumulene complexes [M{C=C=C6H4=C=C(H)CPh3}(LL)Cp’]+, which were isolated as the water adducts [M{C≡C-1,4-C6H4-C(=O)CH2CPh3}(LL)Cp’] ( 6 a–d ). Evincing the scope of the formation of such extended cumulenes from ethynyl-substituted arylvinylene precursors, the rather reactive half-sandwich (5-ethynyl-2-thienyl)vinylidene complexes [M{C=C(H)-2,5-cC4H2S-C≡CH}(LL)Cp’]BF4 ([ 7 a – d ]BF4 add water readily to give [M{C≡C-2,5-cC4H2S-C(=O)CH3}(LL)Cp’] ( 8 a – d )].  相似文献   

4.
DNA binding and photocleavage characteristics of a series of mixed-ligand complexes of the type [M(phen)2LL]n+ (where M = Co(III), Ni(II) or Ru(II), LL = 1,10-phenanthroline (phen), phenanthroline-dione (phen-dione) or dipyridophenazine (dppz) andn = 3 or 2) have been investigated in detail. Various physico-chemical and biochemical techniques including UV/Visible, fluorescence and viscometric titration, thermal denaturation, and differential pulse voltammetry have been employed to probe the details of DNA binding by these complexes; intrinsic binding constants (K b) have been estimated under a similar set of experimental conditions. Analysis of the results suggests that intercalative ability of the coordinated ligands varies as dppz>phen>phen-dione in this series of complexes. While the Co(II) and Ru(II) complexes investigated in this study effect photocleavage of the supercoiled pBR 322 DNA, the corresponding Ni(II) complexes are found to be inactive under similar experimental conditions. Results of detailed investigations carried out inquiring into the mechanistic aspects of DNA photocleavage by [Co(phen)2(dppz)]3+ have also been reported.  相似文献   

5.
Comparative analysis of the donor-acceptor capacities of diphosphine ligands in two series of complexes: cis-[Ru(bpy)2(LL)]q + [LL = 2,2'-bipyridine (bpy), o-benzoquinonediimine (bqdi), cis-1,2-bis(diphenylphosphino)ethane, cis-1,2-bis(diphenylphosphino)ethylene (dppen), (NH3)2, and (CO)2] and [Ru(NH3)4. (LL)]2 + (LL = bpy, dppen, and bqdi), was performed. Diphosphines are the strongest donors; they compare in -acceptor capacity which is associated with phosphorus d orbitals with 2,2'-bipyridine and fall far short of o-benzoquinonediimine and carbonyl.  相似文献   

6.
In a high‐yield one‐pot synthesis, the reactions of [Cp*M(η5‐P5)] (M=Fe ( 1 ), Ru ( 2 )) with I2 resulted in the selective formation of [Cp*MP6I6]+ salts ( 3 , 4 ). The products comprise unprecedented all‐cis tripodal triphosphino‐cyclotriphosphine ligands. The iodination of [Cp*Fe(η5‐As5)] ( 6 ) gave, in addition to [Fe(CH3CN)6]2+ salts of the rare [As6I8]2? (in 7 ) and [As4I14]2? (in 8 ) anions, the first di‐cationic Fe‐As triple decker complex [(Cp*Fe)2(μ,η5:5‐As5)][As6I8] ( 9 ). In contrast, the iodination of [Cp*Ru(η5‐As5)] ( 10 ) did not result in the full cleavage of the M?As bonds. Instead, a number of dinuclear complexes were obtained: [(Cp*Ru)2(μ,η5:5‐As5)][As6I8]0.5 ( 11 ) represents the first Ru‐As5 triple decker complex, thus completing the series of monocationic complexes [(CpRM)2(μ,η5:5‐E5)]+ (M=Fe, Ru; E=P, As). [(Cp*Ru)2As8I6] ( 12 ) crystallizes as a racemic mixture of both enantiomers, while [(Cp*Ru)2As4I4] ( 13 ) crystallizes as a symmetric and an asymmetric isomer and features a unique tetramer of {AsI} arsinidene units as a middle deck.  相似文献   

7.
The synthesis of heterobimetallic AuI/RuII complexes of the general formula syn- and anti-[{AuCl}( L1 ∩ L2 ){Ru(bpy)2}][PF6]2 is reported. The ditopic bridging ligand L1 ∩ L2 refers to a P,N hybrid ligand composed of phosphine and bipyridine substructures, which was obtained via a post-functionalization strategy based on Diels-Alder reaction between a phosphole and a maleimide moiety. It was found that the stereochemistry at the phosphorus atom of the resulting 7-phosphanorbornene backbone can be controlled by executing the metal coordination and the cycloaddition reaction in a different order. All precursors, as well as the mono- and multimetallic complexes, were isolated and fully characterized by various spectroscopic methods such as NMR, IR, and UV-vis spectroscopy as well as cyclic voltammetry. Photophysical measurements show efficient phosphorescence for the investigated monometallic complex anti-[( L1 ∩ L2 ){Ru(bpy)2}][PF6]2 and the bimetallic analogue syn-[{AuCl}( L1 ∩ L2 ){Ru(bpy)2}][PF6]2, thus indicating a small influence of the {AuCl} fragment on the photoluminescence properties. The heterobimetallic AuI/RuII complexes syn- and anti-[{AuCl}( L1 ∩ L2 ){Ru(bpy)2}][PF6]2 are both active catalysts in the P-arylation of aryldiazonium salts promoted by visible light with H-phosphonate affording arylphosphonates in yields of up to 91 %. Both dinuclear complexes outperform their monometallic counterparts.  相似文献   

8.
Kurova  V. S.  Ershov  A. Yu.  Ryabov  A. D. 《Russian Chemical Bulletin》2001,50(10):1849-1854
The redox potentials of the cis-[Ru(LL)2XY]n+ complexes (LL = 2,2"-bipyridyl (bpy), 1,10-phenanthroline (phen), and 4,4"-dimethyl-2,2"-bipyridyl (Me2bpy); X, Y = Cl, Br, CO3 2–, NO2 , SCN, N3 , H2O, and DMSO) in aqueous buffer solutions were measured and analyzed in the framework of the Lever theory on the additivity of contributions of ligands (E L) to the apparent redox potential of the complex (E o"). The complexes manifest the properties of reversible or quasireversible redox systems, whose formal redox potentials lie in the 0.2—0.5 V range. The complexes are efficient electron transfer mediators between the active center of glucose oxidase (GO) from Aspergillus niger and an electrode.  相似文献   

9.
Summary The kinetic behaviour of cis-[Ru(bipy)2(H2O)2]2+ towards the anating ligand pyridine-2-aldoxime as a function of temperature, ligand concentration, substrate complex concentration and pH is reported and the rate expression Rate = k 1 k 2[Ru(bipy)2(H2O)2]2+ [LL]/(k -1 + k 2[LL]) is established where k 1 is the water dissociation rate constant for the slow step, k -1 is the rate constant for the aquation, k 2 is the ligand-capturing rate constant of the five-coordinate intermediate [Ru(bipy)2(H2O)]2+ and LL is pyridine-2-aldoxime. The reaction is pH-dependent in the pH range 3.65–5.50. The enthalpy and entropy of activation were obtained using Eyring plots. The results are in conformity with a dissociative mechanism.  相似文献   

10.
Herein we report the preparation of a series of Ru(II) complexes featuring α-iminopyridine ligands bearing thioether functionality (NNSR, where R = Me, CH2Ph, Ph). Metallation using [(p-cymene)RuCl]2 permits access to Ru complexes with a κ2-N,N donor set in which the thioether moiety remains uncoordinated. In the presence of a strong field ligand such as acetonitrile or triphenylphosphine, the p-cymene moiety is displaced, and the ligand adopts a κ3-N,N,S binding mode. These complexes are characterized using a combination of solution and solid state methods, including the crystal structure of [(NNSMe)Ru (NCMe)2Cl]Cl. The κ2-N,N-Ru(II) complexes are shown to serve as efficient precatalysts for the oxidation of sec-phenethyl alcohol at modest loadings (alcohol: Ru = 20:1), using a variety of external oxidants and solvents. The complex bearing an S-Ph donor was found to be the most active oxidation catalyst of those surveyed, suggesting that the thioether donor plays an active role in the catalytic cycle.  相似文献   

11.
Reaction of [Ru(edta)(H2O)]? (edta4??=?ethylenediaminetetraacetate), [Ru(pdta)(H2O)]? (pdta4??=?propylenediaminetetraacetate) and [Ru(hedtra)(H2O)] (hedtra3??=?N-hydroxyethylethylenediaminetriacetate) with S-serine (Ser) was studied spectrophotometrically and kinetically. Serine protease inhibition studies were performed with the three complexes using the serine protease enzymes chymotrypsin and subtilisin with azoalbumin as substrate. Results are discussed in terms of the reactivity of the Ru-pac (pac?=?polyaminopolycarboxylates) complexes with serine. The order of protease inhibition efficacy of the Ru-pac complexes is [Ru(pdta)(H2O)]??>?[Ru(edta)(H2O)]????[Ru(hedtra)(H2O)], in good agreement with the observed reactivity of Ru-pac complexes with serine.  相似文献   

12.
1H, 13C and 15N NMR studies of iron(II), ruthenium(II) and osmium(II) tris‐chelated cationic complexes with 2,2′‐bipyridine and 1,10‐phenanthroline of the general formula [M(LL)3]2+ (M = Fe, Ru, Os; LL = bpy, phen) were performed. Inconsistent literature 1H signal assignments were corrected. Significant shielding of nitrogen‐adjacent protons [H(6) in bpy, H(2) in phen] and metal‐bonded nitrogens was observed, being enhanced in the series Ru(II) → Os(II) → Fe(II) for 1H, Fe(II) → Ru(II) → Os(II) for 15N and bpy → phen for both nuclei. The carbons are deshielded, the effect increasing in the order Ru(II) → Os(II) → Fe(II). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Ruthenium(II) polypyridyl complexes with long‐wavelength absorption and high singlet‐oxygen quantum yield exhibit attractive potential in photodynamic therapy. A new heteroleptic RuII polypyridyl complex, [Ru(bpy)(dpb)(dppn)]2+ (bpy=2,2′‐bipyridine, dpb=2,3‐bis(2‐pyridyl)benzoquinoxaline, dppn=4,5,9,16‐tetraaza‐dibenzo[a,c]naphthacene), is reported, which exhibits a 1MLCT (MLCT: metal‐to‐ligand charge transfer) maximum as long as 548 nm and a singlet‐oxygen quantum yield as high as 0.43. Steady/transient absorption/emission spectra indicate that the lowest‐energy MLCT state localizes on the dpb ligand, whereas the high singlet‐oxygen quantum yield results from the relatively long 3MLCT(Ru→dpb) lifetime, which in turn is the result of the equilibrium between nearly isoenergetic excited states of 3MLCT(Ru→dpb) and 3ππ*(dppn). The dppn ligand also ensures a high binding affinity of the complex towards DNA. Thus, the combination of dpb and dppn gives the complex promising photodynamic activity, fully demonstrating the modularity and versatility of heteroleptic RuII complexes. In contrast, [Ru(bpy)2(dpb)]2+ shows a long‐wavelength 1MLCT maximum (551 nm) but a very low singlet‐oxygen quantum yield (0.22), and [Ru(bpy)2(dppn)]2+ shows a high singlet‐oxygen quantum yield (0.79) but a very short wavelength 1MLCT maximum (442 nm).  相似文献   

14.
Herein, we describe a new family of tris chelate homoleptic Ru (II) complexes, [Ru(N^N) 3 ] 2+ , where the role of the diimine-type ligands (N^N) was fulfilled by 2-pyridyl (PTZ) or 2-quinolyl tetrazole (QTZ) derivatives decorated with various alkyl substituents at the N-2 position of the tetrazole ring. The new Ru (II) complexes with general formula [Ru (PTZ-R) 3 ] 2+ and [Ru (QTZ-R) 3 ] 2+ , were obtained as mixtures of facial (fac) and meridional (mer) isomers, as suggested by NMR (1H, 13C) experiments, and confirmed in the case of mer-[Ru (QTZ-Me) 3 ] 2+ , by X-ray crystallography. The photophysical behavior of the tetrazole-based [Ru(N^N) 3 ] 2+ type species was investigated by UV–vis absorption spectroscopy, providing trends typical of polypyridyl Ru (II) complexes. The new homoleptic complexes fac/mer- [Ru (PTZ-R) 3 ] 2+ and fac/mer- [Ru (QTZ-R) 3 ] 2+ have been assessed for any eventual antimicrobial activity towards two different bacteria such as Gram-negative Escherichia coli and Gram-positive Deinococcus radiodurans. Whereas being inactive toward E. coli, the response of agar disks diffusion tests suggested that some of the new fac/mer Ru (II) complexes could inhibit the growth of D. radiodurans. This effect was further investigated by determining the growth kinetics in liquid medium of D. radiodurans exposed to the fac/mer- [Ru (PTZ-R) 3 ] 2+ and fac/mer- [Ru (QTZ-R) 3 ] 2+ complexes at different concentrations. The outcome of these experiments highlighted that the turn-on of the growth inhibitory effect took place as the linear hexyl chain was appended to the PTZ or QTZ scaffold, suggesting also how the inhibitory activity appeared more pronouncedly exerted by the facial isomers fac- [Ru (PTZ-Hex) 3 ] 2+ and fac- [Ru (QTZ-Hex) 3 ] 2+ (MIC = ca. 3.0 μg/ml) with respect to the corresponding meridional isomers (MIC = ca. 6.0 μg/ml).  相似文献   

15.
[Rh(LL)2]+, [Rh(LL)(diene)]+ and [Rh(LL)S2]+ complexes are effective as catalysts for the oxidation by dioxygen of terminal olefins to methyl ketones. The complexes act as monooxygenases, the second oxygen atom being transferred to the alcohol solvent.  相似文献   

16.
Ruthenium(II) complexes containing two tetradentate ligands, 1,2-bis(o-aminophenylthio)ethane (L1) and 1,2-(oaminophenylthio)xylene (L2), have been prepared. The complexes, which are of the type Ru(L)Cl2 [L = L1 (1);/L2 (2)], [Ru(L)(PPh3)Cl]Cl [L = L1 (3); L2 (4)] and [Ru(L)(bpy)](PF6)2 [L = L1 (5);/L2 (6)], were characterised by elemental analysis, i.r., u.v.-vis. and n.m.r. spectroscopy and their electrochemical behaviour has been examined by cyclic voltammetry using a glassy carbon working electrode and an Ag/AgCl electrode as the reference electrode. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
The reaction of Brønsted acids with cis-[Ru(bpy)2(CO3)] (bpy?=?2,2′-bipyridine) under CO results in cleavage of the carbonato ligand and formation of cationic cis-[Ru(bpy)2(CO)L] n + complexes [L?=?ONO2 (1 +), OH2 (2 2+), Cl (3 +), OCOH (4 +), and OCOCH3 (5 +)]. The structures of 1 + and 2 2+ were confirmed by single-crystal X-ray diffraction. Crystal data for 1(PF6): monoclinic, P21/c, a?=?10.5242(3), b?=?15.4727(3), c?=?14.6571(3) Å, β?=?92.3219(9)°, V?=?2384.77(9) Å3, Z?=?4, D calcd?=?1.806?g cm?3, 5460 unique reflections (R int?=?0.032), R 1?=?0.0540 [I?>?2σ(I)], wR 2?=?0.1642 (all reflections); crystal data for 2(ClO4)2?·?H2O: monoclinic, C2/c, a?=?20.4247(7), b?=?10.0777(3), c?=?15.6039(5) Å, β?=?127.7569(8)°, V?=?2539.31(14) Å3, Z?=?4, D calcd?=?1.769?g cm?3, 2895 unique reflections (R int?=?0.036), R 1?=?0.0343 [I?>?2σ(I)], wR 2?=?0.0907 (all reflections). Except for 2(PF6)2 the complexes exhibit oxidation at 1.02–1.30?V versus Fc+/Fc in acetonitrile. Bipyridine-centered reductions are also observed; these redox potentials depend on the nature of L. This convenient synthesis will be useful for producing cis-[Ru(bpy)2(CO)L] n +-type complexes in high yield.  相似文献   

18.
Polypyridyl and related ligands have been widely used for the development of water oxidation catalysts. Supposedly these ligands are oxidation‐resistant and can stabilize high‐oxidation‐state intermediates. In this work a series of ruthenium(II) complexes [Ru(qpy)(L)2]2+ (qpy=2,2′:6′,2′′:6′′,2′′′‐quaterpyridine; L=substituted pyridine) have been synthesized and found to catalyze CeIV‐driven water oxidation, with turnover numbers of up to 2100. However, these ruthenium complexes are found to function only as precatalysts; first, they have to be oxidized to the qpy‐N,N′′′‐dioxide (ONNO) complexes [Ru(ONNO)(L)2]3+ which are the real catalysts for water oxidation.  相似文献   

19.
Two piano-stool ruthenium(II) complexes Ru(η6-p-cymene)Cl2PPh2CH2OH ( RuPOH ) and Ru(η6-p-cymene)Cl2P(p-OCH3Ph)2CH2OH ( RuMPOH ) and two half-sandwich iridium(III) complexes Ir(η 5-Cp*)Cl2PPh2CH2OH ( IrPOH ) and Ir(η 5-Cp*)Cl2P(p-OCH3Ph)2CH2OH ( IrMPOH ) have been studied in terms of potential anticancer activity on previously selected cell line (human lung adenocarcinoma). Based on experimental results obtained in monoculture in vitro model mechanistic considerations on the possible cellular modes of action have been carried out. ICP-MS analysis revealed the higher cellular uptake for less hydrophobic Ir(III) complexes in comparison to the corresponding Ru(II) compounds. Cytometric analysis showed a predominance of apoptosis over the other types of cell death for all complexes. The apoptotic pathway was confirmed by a decrease in mitochondrial membrane potential and the activation of caspases-3/9 for both Ru(II) and Ir(III) complexes. It was concluded that in the case of Ru(II) complexes the intense ROS generation is mainly responsible for the resulting cytotoxicity. The corresponding Ir(III) complexes trigger simultaneously at least three different cytotoxic pathways i. e., depletion of mitochondrial potential, activation of caspases-dependent apoptosis, and ROS-associated oxidation. Thus, it can be assumed that the final accumulation of toxic effects over time via parallel activation of different pathways results in the highest cytotoxicity in vitro exhibited by Ir(III) complexes when compared with Ru(II) complexes.  相似文献   

20.
《化学:亚洲杂志》2017,12(2):203-207
Reaction of triazolium precursors [MIC(CH2)n ‐ H+]I (n =1–3) with potassium hexamethyldisilazane (KHMDS) and AuCl(SMe2) generates the gold(I) complexes of the type MIC(CH2)n ⋅AuI. Visible light exposure of the latter complexes promotes a spontaneous disproportionation process rendering gold(III) complexes of the type [{MIC(CH2)n }2⋅AuI2]+I. Both the AuI and AuIII complex series were tested in the catalytic hydrohydrazination of terminal alkynes using hydrazine as nitrogen source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号