首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Silylhydrazines and Dimeric N,N′‐Dilithium‐N,N′‐bis(silyl)hydrazides – Syntheses, Reactions, Isomerisations Di‐tert.‐butylchlorosilane reacts with dilithiated hydrazine in a molar ratio to give the N,N′‐bis(silyl)hydrazine, [(Me3C)2SiHNH]2, ( 5 ). Isomeric tris(silyl)hydrazines, N‐difluorophenylsilyl‐N′,N′‐bis(dimethylphenylsilyl)hydrazine ( 7 ) and N‐difluorophenylsilyl‐N,N′‐bis(dimethylphenylsilyl)hydrazine ( 8 ) are formed in the reaction of N‐lithium‐N′‐N′‐bis(dimethylphenylsilyl)hydrazide and F3SiPh. Isomeric bis(silyl)hydrazines, (Me3C)2SiFNHNHSiMe2Ph ( 9 ) and (Me3C)2‐ SiF(PhMe2Si)N–NH2 ( 10 ) are the result of the reaction of di‐tert.‐butylfluorosilylhydrazine and ClSiMe2Ph in the presence of Et3N. Quantum chemical calculations for model compounds demonstrate the dyotropic course of the rearrangement. The monolithium derivative of 5 forms a N‐lithium‐N′,N′‐bis(silyl)hydrazide ( 11 ). The dilithium salts of 5 ( 13 ) and of the bis(tert.‐butyldiphenylsilyl)hydrazine ( 12 ) crystallize as dimers with formation of a central Li4N4 unit. The formation of 12 from 11 occurs via a N′ → N‐silyl group migration. Results of crystal structure analyses are reported.  相似文献   

2.
The treatment of chlorido[bis(4‐methylthiazolyl)isoindoline]palladium(II) [(4‐Mebti)PdCl] with sodium tetrakis[bis‐3,5(trifluoromethyl)phenyl]boranate Na[BArF] in the absence of donor ligands or solvents results in the exclusive formation of the dinuclear cationic complex [{(4‐Mebti)Pd}2Cl]+ independent of the stoichiometry of the reactants. The new compound crystallizes either in the space group or in C2/c depending on the amount of co‐crystallized solvent. In both cases, the molecular structure of the dinuclear cation reveals a sterically crowded situation with the Pd2+ ion bound in a non‐planar coordination environment. In solution, [{(4‐Mebti)Pd}2Cl]+ reacts with acetonitrile to form the neutral [(4‐Mebti)PdCl] and an equilibrium mixture of different complexes, from which the mononuclear species [(4‐Mebti)Pd(NCCH3)]+ can be isolated as the pure BArF derivative.  相似文献   

3.
A series of Zn (II), Pd (II) and Cd (II) complexes, [(L) n MX 2 ] m (L = L‐a–L‐c; M = Zn, Pd; X = Cl; M = Cd; X = Br; n, m = 1 or 2), containing 4‐methoxy‐N‐(pyridin‐2‐ylmethylene) aniline ( L‐a ), 4‐methoxy‐N‐(pyridin‐2‐ylmethyl) aniline ( L‐b ) and 4‐methoxy‐N‐methyl‐N‐(pyridin‐2‐ylmethyl) aniline ( L‐c ) have been synthesized and characterized. The X‐ray crystal structures of Pd (II) complexes [L 1 PdCl 2 ] (L = L‐b and L‐c) revealed distorted square planar geometries obtained via coordinative interaction of the nitrogen atoms of pyridine and amine moieties and two chloro ligands. The geometry around Zn (II) center in [(L‐a)ZnCl 2 ] and [(L‐c)ZnCl 2 ] can be best described as distorted tetrahedral, whereas [(L‐b) 2 ZnCl 2 ] and [(L‐b) 2 CdBr 2 ] achieved 6‐coordinated octahedral geometries around Zn and Cd centers through 2‐equivalent ligands, respectively. In addition, a dimeric [(L‐c)Cd(μ ‐ Br)Br] 2 complex exhibited typical 5‐coordinated trigonal bipyramidal geometry around Cd center. The polymerization of methyl methacrylate in the presence of modified methylaluminoxane was evaluated by all the synthesized complexes at 60°C. Among these complexes, [(L‐b)PdCl 2 ] showed the highest catalytic activity [3.80 × 104 g poly (methyl methacrylate) (PMMA)/mol Pd hr?1], yielding high molecular weight (9.12 × 105 g mol?1) PMMA. Syndio‐enriched PMMA (characterized using 1H‐NMR spectroscopy) of about 0.68 was obtained with Tg in the range 120–128°C. Unlike imine and amine moieties, the introduction of N‐methyl moiety has an adverse effect on the catalytic activity, but the syndiotacticity remained unaffected.  相似文献   

4.
Hydrocarbon‐bridged Metal Complexes. XLIX. Coordination Chemistry of Bis(ferrocenyl) substituted 1,3 Diketonates with Ruthenium, Rhodium, Iridium, and Palladium The reactions of the enolates of diferrocenoylmethane and of spacer bridged bis‐, tris‐ and tetrakis(ferrocenoyl)‐1,3‐diketones with chlorobridged compounds [(R3P)PdCl2]2, [(η3‐C3H5)PdCl]2, [(p‐cymene)RuCl2]2, [Cp*MCl2]2 (M = Rh, Ir) give a series of mono‐, bis‐, tris‐ and tetrakis(chelate) complexes 2 – 18 . The structures of (Ph3P)(Cl)Pd[OC(Fe)CHC(Fc)O] ( 3 ) and (Tol3P)(Cl) · Pd[OC(Fc)CHC(O)–C(O)CHC(Fc)O]Pd(Cl)(PTol3) ( 11 ) were determined by X‐ray diffraction. The methine H atom of diferrocenoylmethane and of 3 was substituted by bromine using N‐bromosuccinimide. The electrophilic glycine equivalent α‐bromo‐N‐boc‐glycine ester was added to the methine C‐atom (C3) of diferrocenoylmethane and the product was used as O,O′ chelate ligand.  相似文献   

5.
A series of late transition metal complexes, [(bpma)Co(μ – Cl)Cl] 2 , [(bpma)Cu(μ – Cl)Cl] 2 , [(bpma)Zn(μ – Cl)Cl] 2 and [(bpma)Cd(μ – Br)Br] 2 (where bpma is 4‐bromo‐N‐((pyridin‐2‐yl)methylene)benzenamine) have been synthesized and structurally characterized. The X‐ray structures of dimeric complexes [(bpma)M(μ – X)X] 2 (M = Co, Cu and Zn, X = Cl; M = Cd, X = Br) showed a distorted 5‐coordinate trigonal bipyramidal geometry involving two nitrogen atoms of N,N‐bidentate ligand, two bridged and one terminal halogen atoms. The complex [(bpma)Cu(μ – Cl)Cl] 2 revealed the highest catalytic activity for the polymerisation of methyl methacrylate in the presence of modified methylaluminoxane with an activity of 9.14 × 104 g PMMA/mol·Cu·h at 60 °C and afforded syndiotactic poly (methylmethacrylate) (rr = 0.69).  相似文献   

6.
A series of organonickel complexes [(R′terpy)Ni(aryl)]X (R′terpy = derivatives of 2,2′;6′,6″‐terpyridine; R′ = 4‐H, 4‐Cl, 4‐Tol and 4,4′,4″‐tBu3; aryl = 2,6‐dimethylphenyl = Xyl or 2,4,6‐trimethylphenyl = Mes; X = Br or PF6) have been prepared and characterized. The crystal structures exhibit a number of intermolecular H bond type interactions, but the structure determining force seems to be the packing of the aryl co‐ligands. The molecules reveal rather undistorted square planar coordination with a N3C ligand set, the central Ni–N bond being remarkably short, despite the expected strong trans influence of the aryl co‐ligands. The long‐wavelength absorptions were assigned to charge transfer transitions. No emission is observed at ambient temperature in the solid and in solution and at low temperature in glasses.  相似文献   

7.
The synthesis, structural characterization, and reactivity of the first two‐coordinate cobalt complex featuring a metal–element multiple bond [(IPr)Co(NDmp)] ( 4 ; IPr=1,3‐bis(2′,6′‐diisopropylphenyl)imidazole‐2‐ylidene; Dmp=2,6‐dimesitylphenyl) is reported. Complex 4 was prepared from the reaction of [(IPr)Co(η2‐vtms)2] (vtms=vinyltrimethylsilane) with DmpN3. An X‐ray diffraction study revealed its linear C Co N core and a short Co N distance (1.691(6) Å). Spectroscopic characterization and calculation studies indicated the high‐spin nature of 4 and the multiple‐bond character of the Co N bond. Complex 4 effected group‐transfer reactions to CO and ethylene to form isocyanide and imine, respectively. It also facilitated E H (E=C, Si) σ‐bond activation of terminal alkyne and hydrosilanes to produce the corresponding cobalt(II) alkynyl and cobalt(II) hydride complexes as 1,2‐addition products.  相似文献   

8.
Three novel fluorene‐containing poly(arylene ethynylene)s with amino‐functionalized side groups were synthesized through the Sonogashira reaction. They were poly{9,9‐bis[6′‐(N,N‐diethylamino)hexyl]‐2,7‐fluorenylene ethynylene}‐altco‐{2,5‐bis[3′‐(N,N‐diethylamino)‐1′‐oxapropyl]‐1,4‐phenylene} ( P1 ), poly{9,9‐bis[6′‐(N,N‐diethylamino)hexyl]‐2,7‐fluorenylene ethynylene} ( P2 ), and poly({9,9‐bis[6′‐(N,N‐diethylamino)hexyl]‐2,7‐fluorenylene ethynylene}‐altco‐(1,4‐phenylene)) ( P3 ). Through the postquaternization treatment of P1 – P3 with methyl iodide, we obtained their cationic water‐soluble conjugated polyelectrolytes (WSCPs): P1′ – P3′ . The water solubility was gradually improved from P3′ to P1′ with increasing contents of hydrophilic side chains. After examining the ultraviolet–visible absorption and photoluminescence (PL) spectra, fluorescence lifetimes, and dynamic light scattering data, we propose that with the reduction of the water solubility from P1′ to P3′ , they exhibited a gradually increased degree of aggregation in H2O. The PL quantum yields of P1′ – P3′ in H2O displayed a decreasing tendency consistent with the increased degree of aggregation, suggesting that the pronounced degree of aggregation was an important reason for the low PL quantum yields of WSCPs in H2O. Two structurally analogous water‐soluble trimers of P2′ and P3′ , model compounds 2,7‐bis(9″,9″‐bis{6‴‐[(N,N‐diethyl)‐N‐methylammonium] hexyl}‐2″‐fluorenylethynyl)‐9,9‐bis{6′‐[(N,N‐diethyl)‐N‐methylammonium]hexyl}fluorene hexaiodide and 1,4‐bis(9′,9′‐bis{6″‐[(N,N‐diethyl)‐N‐methylammonium]hexyl}‐2′‐fluorenylethynyl)benzene tetraiodide, were synthesized. The amplified fluorescence quenching of these WSCPs by Fe(CN)64− in H2O was studied by comparison with a corresponding analogous trimer. The effects of aggregation on the fluorescence quenching may be two‐edged in these cases. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5778–5794, 2006  相似文献   

9.
The development of rhenium(I) chemistry has been restricted by the limited structural and electronic variability of the common pseudo‐octahedral products fac‐[ReX(CO)3L2] (L2=α‐diimine). We address this constraint by first preparing the bidentate bis(imino)pyridine complexes [(2,6‐{2,6‐Me2C6H3N?CPh}2C5H3N)Re(CO)3X] (X=Cl 2 , Br 3 ), which were characterized by spectroscopic and X‐ray crystallographic means, and then converting these species into tridentate pincer ligand compounds, [(2,6‐{2,6‐Me2C6H3N?CPh}2C5H3N)Re(CO)2X] (X=Cl 4 , Br 5 ). This transformation was performed in the solid‐state by controlled heating of 2 or 3 above 200 °C in a tube furnace under a flow of nitrogen gas, giving excellent yields (≥95 %). Compounds 4 and 5 define a new coordination environment for rhenium(I) carbonyl chemistry where the metal center is supported by a planar, tridentate pincer‐coordinated bis(imino)pyridine ligand. The basic photophysical features of these compounds show significant elaboration in both number and intensity of the d–π* transitions observed in the UV/Vis spec tra relative to the bidentate starting materials, and these spectra were analyzed using time‐dependent DFT computations. The redox nature of the bis(imino)pyridine ligand in compounds 2 and 4 was examined by electrochemical analysis, which showed two ligand reduction events and demonstrated that the ligand reduction shifts to a more positive potential when going from bidentate 2 to tridentate 4 (+160 mV for the first reduction step and +90 mV for the second). These observations indicate an increase in electrostatic stabilization of the reduced ligand in the tridentate conformation. Elaboration on this synthetic methodology documented its generality through the preparation of the pseudo‐octahedral rhenium(I) triflate complex [(2,6‐{2,6‐Me2C6H3N?CPh}2C5H3N)Re(CO)2OTf] ( 7 , 93 % yield).  相似文献   

10.
A novel palladium complex 4, cis‐dichloride(1,2‐bis(diphenylphosphino)vinyl‐P,P′,C)palladium(II)‐(bis(diphenylphosphino)methane‐P,P′)cobaltacarbonyl, was obtained and characterized from the treatment of [(μ‐Ph2PCH2PPh2)Co2(CO)4][(Ph2PC≡CPPh2)‐PdCl2] 3 with hydrochloric acid. The framework of 4 can be regarded as a grouping of two metal‐containing fragments: ‐Co(CO)2(dppm) and PdCl2(μ‐P,P‐Ph2PCH=C(‐)PPh2).  相似文献   

11.
Organometallic Compounds of Copper. XVIII. On the Reaction of the Alkyne Copper(I) Complexes [CuX(S‐Alkyne)] (X = Cl, Br, I; S‐Alkyne = 3,3,6,6‐Tetramethyl‐1‐thiacyclohept‐4‐yne) with the Phosphanes PMe3 and Ph2PCH2CH2PPh2 (dppe) The alkyne copper(I) halide complexes [CuX(S‐Alkyne)]n ( 2 ) ( 2 a : X = Cl, 2 b : X = Br, 2 c : X = I; S‐Alkyne = 3,3,6,6‐tetramethyl‐1‐thiacyclohept‐4‐yne; n = 2, ∞) add the phosphanes PMe3 and Ph2PCH2CH2PPh2 (dppe) to form the mono‐ and dinuclear copper compounds [(S‐Alkyne)CuX(PMe3)] ( 6 ) ( 6 a : X = Cl, 6 b : X = Br) and [(S‐Alkyne)CuX(μ‐dppe)CuX(S‐Alkyne)] ( 7 a : X = Cl, 7 b : X = Br, 7 c : X = I), respectively. By‐product in the reaction of 2 a with dppe is the tetranuclear complex [(S‐Alkyne)Cu(μ‐X)2Cu(μ‐dppe)2Cu(μ‐X)2Cu(S‐Alkyne)] ( 8 ). In case of the compounds 7 prolonged reaction times yield the alkyne‐free dinuclear copper complexes [Cu2X2(dppe)3] ( 9 ) ( 9 a : X = Cl, 9 b : X = Br, 9 c : X = I)). X‐ray diffraction studies were carried out with the new compounds 6 a , 6 b , 7 b , 8 , and 9 c .  相似文献   

12.
The synthesis, structural characterization, and reactivity of the first two‐coordinate cobalt complex featuring a metal–element multiple bond [(IPr)Co(NDmp)] ( 4 ; IPr=1,3‐bis(2′,6′‐diisopropylphenyl)imidazole‐2‐ylidene; Dmp=2,6‐dimesitylphenyl) is reported. Complex 4 was prepared from the reaction of [(IPr)Co(η2‐vtms)2] (vtms=vinyltrimethylsilane) with DmpN3. An X‐ray diffraction study revealed its linear C? Co? N core and a short Co? N distance (1.691(6) Å). Spectroscopic characterization and calculation studies indicated the high‐spin nature of 4 and the multiple‐bond character of the Co? N bond. Complex 4 effected group‐transfer reactions to CO and ethylene to form isocyanide and imine, respectively. It also facilitated E? H (E=C, Si) σ‐bond activation of terminal alkyne and hydrosilanes to produce the corresponding cobalt(II) alkynyl and cobalt(II) hydride complexes as 1,2‐addition products.  相似文献   

13.
The title compound, [4′‐(4‐bromophenyl)‐2,2′:6′,2′′‐terpyridine]chlorido(trifluoromethanesulfonato)copper(II), [Cu(CF3O3S)Cl(C21H14BrN3)], is a new copper complex containing a polypyridyl‐based ligand. The CuII centre is five‐coordinated in a square‐pyramidal manner by one substituted 2,2′:6′,2′′‐terpyridine ligand, one chloride ligand and a coordinated trifluoromethanesulfonate anion. The Cu—N bond lengths differ by 0.1 Å for the peripheral and central pyridine rings [2.032 (2) (mean) and 1.9345 (15) Å, respectively]. The presence of the trifluoromethanesulfonate anion coordinated to the metal centre allows Br...F halogen–halogen interactions, giving rise to the formation of a dimer about an inversion centre. This work also demonstrates that the rigidity of the ligand allows the formation of other types of nonclassical interactions (C—H...Cl and C—H...O), yielding a three‐dimensional network.  相似文献   

14.
Crystal Structures and Spectroscopic Properties of 2λ3‐Phospha‐1, 3‐dionates and 1, 3‐Dionates of Calcium ‐ Comparative Studies on the 1, 3‐Diphenyl and 1, 3‐Di(tert‐butyl) Derivatives A hydrogen‐metal exchange between dibenzoylphosphane and calcium carbide in tetrahydrofuran (THF) followed by addition of the ligand 1, 3, 5‐trimethyl‐1, 3, 5‐triazinane (TMTA) furnishes the binuclear complex bis[(tmta‐N, N′, N″)calcium bis(dibenzoylphosphanide)] ( 1a ) co‐crystallizing with benzene. Similarly, reaction of bis(2, 2‐dimethylpropionyl)phosphane with bis(thf‐O)calcium bis[bis(trimethylsilyl)amide] in 1, 2‐dimethoxyethane (DME) gives bis(dme‐O, O′)calcium bis[bis(2, 2‐dimethylpropionyl)phosphanide] ( 1b ) in high yield. The carbon analogues 1, 3‐diphenylpropane‐1, 3‐dione (dibenzoylmethane) or 2, 2, 6, 6‐tetramethylheptane‐3, 5‐dione (dipivaloylmethane) and bis(thf‐O)calcium bis[tris(trimethylsilylmethyl)zincate] in DME afford bis(dme‐O, O′)calcium bis(dibenzoylmethanide) ( 2a ) and the binuclear complex (μ‐dme‐O, O′)bis[(dme‐O, O′)calcium bis(dipivaloylmethanide)] ( 2b ), respectively. Dialkylzinc formed during the metalation reaction shows no reactivity towards the 1, 3‐dionates 2a and 2b . Finally, from the reaction of the unsymmetrically substituted ligand 2‐(methoxycarbonyl)cyclopentanone and bis(thf‐O)calcium bis[bis(trimethylsilyl)amide] in toluene, the trinuclear complex 3 is obtained, co‐crystallizing with THF. The β‐ketoester anion bridges solely via the cyclopentanone unit.  相似文献   

15.
A novel Ni2+ complex with the N4‐donor tripodal ligand bis[(1‐methyl‐1H‐imidazol‐2‐yl)methyl][2‐(pyridin‐2‐yl)ethyl]amine (L), namely, aqua{bis[(1‐methyl‐1H‐imidazol‐2‐yl‐κN3)methyl][2‐(pyridin‐2‐yl‐κN)ethyl]amine‐κN}chloridonickel(II) perchlorate, [NiCl(C17H22N6)(H2O)]ClO4 or [NiCl(H2O)(L)Cl]ClO4 ( 1 ), was synthesized and characterized by spectroscopic and spectrometric methods. The crystal structure of 1 reveals an interesting and unusual cocrystallization of isomeric complexes, which are crystallographically disordered with partial occupancy of the labile cis aqua and chloride ligands. The Ni2+ centre exhibits a distorted octahedral environment, with similar bond lengths for the two Ni—N(imidazole) bonds. The bond length increases for Ni—N(pyridine) and Ni—N(amine), which is in agreement with literature examples. The bond lengths of the disordered labile sites are also in the expected range and the Ni—Cl and Ni—O bond lengths are comparable with similar compounds. The electronic, redox and solution stability behaviour of 1 were also evaluated, and the data obtained suggest the maintenance of structural integrity, with no sign of demetalation or decomposition under the studied conditions.  相似文献   

16.
Reaction of [Au(DAPTA)(Cl)] with RaaiR’ in CH2Cl2 medium following ligand addition leads to [Au(DAPTA)(RaaiR’)](Cl) [DAPTA=diacetyl-1,3,5-triaza-7-phosphaadamantane, RaaiR’=p-R-C6H4-N=N- C3H2-NN-1-R’, (1—3), abbreviated as N,N’-chelator, where N(imidazole) and N(azo) represent N and N’, respectively; R=H (a), Me (b), Cl (c) and R’=Me (1), CH2CH3 (2), CH2Ph (3)]. The 1H NMR spectral measurements in D2O suggest methylene, CH2, in RaaiEt gives a complex AB type multiplet while in RaaiCH2Ph it shows AB type quartets. 13C NMR spectrum in D2O suggest the molecular skeleton. The 1H-1H COSY spectrum in D2O as well as contour peaks in the 1H-13C HMQC spectrum in D2O assign the solution structure.  相似文献   

17.
Nickel(I) Complexes with 1,1′‐Bis(phosphino)ferrocenes as Ligands The thermically stable monomeric Nickel(I) complexes [(dtbpf)Ni(acac)] ( 1 ) and [(dippf)NiCl] ( 2 ) were synthesized and characterized by elemental analyses, EPR spectroscopy, and by X‐ray crystal structure analyses of single crystals (dtbpf: 1,1′‐bis(di‐tertbutylphosphino)ferrocene; dippf: 1,1′‐bis(diisopropylphosphino)ferrocene). 1 is formed by reduction of Ni(acac)2 with triethylaluminium in the presence of dtbpf, together with the nickel(0) complex [(dtbpf)Ni(C2H4)]. 1 contains a NiI atom surrounded of two O‐ and two P donor atoms in a distorted tetrahedral coordination. 2 was obtained by reduction of [(dippf)NiCl2] with NaBH4. In 2 the nickel(I) atom adopts trigonal planar coordination.  相似文献   

18.
The red colour of the novel organonickel complex [(dppz)Ni(Mes)Br] (dppz = dipyrido[3,2‐a:2′,3′‐c]phenazine, Mes = 2,4,6‐trimethylphenyl) originates from long‐wavelength MLCT/L′LCT charge transfer bands. However, luminescence in dilute solution comes presumably from the 3π‐π* (phenazine) excited state. The red‐shifted emission exhibited in concentrated solutions is assigned to dimers. In the solid state emission is quenched. The crystal structure reveals two different types of π‐π stacking along the crystallographic a axis.  相似文献   

19.
The graft copolymers composed of “Y”‐shaped polystyrene‐b‐poly(ethylene oxide)2 (PS‐b‐PEO2) as side chains and hyperbranched poly(glycerol) (HPG) as core were synthesized by a combination of “click” chemistry and atom transfer radical polymerization (ATRP) via “graft from” and “graft onto” strategies. Firstly, macroinitiators HPG‐Br were obtained by esterification of hydroxyl groups on HPG with bromoisobutyryl bromide, and then by “graft from” strategy, graft copolymers HPG‐g‐(PS‐Br) were synthesized by ATRP of St and further HPG‐g‐(PS‐N3) were prepared by azidation with NaN3. Then, the precursors (Bz‐PEO)2‐alkyne with a single alkyne group at the junction point and an inert benzyl group at each end was synthesized by sequentially ring‐opening polymerization (ROP) of EO using 3‐[(1‐ethoxyethyl)‐ethoxyethyl]‐1,2‐propanediol (EEPD) and diphenylmethylpotassium (DPMK) as coinitiator, termination of living polymeric species by benzyl bromide, recovery of protected hydroxyl groups by HCl and modification by propargyl bromide. Finally, the “click” chemistry was conducted between HPG‐g‐(PS‐N3) and (Bz‐PEO)2‐alkyne in the presence of N,N,N′,N″,N”‐pentamethyl diethylenetriamine (PMDETA)/CuBr system by “graft onto” strategy, and the graft copolymers were characterized by SEC, 1H NMR and FTIR in details. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

20.
The steric and electronic factors that influence which of the two rings of a substituted biphenyl ligand coordinates to chromium are of interest and it has been suggested that haptotropic rearrangements within these molecules may be limited if the arene–arene dihedral angle is too large. Two tricarbonylchromium(0) complexes and their respective free ligands have been characterized by single‐crystal X‐ray diffraction. In the solid state, tricarbonyl[(1′,2′,3′,4′,5′,6′‐η)‐2‐fluoro‐1,1′‐biphenyl]chromium(0), [Cr(C12H9F)(CO)3], (I), exists as the more stable isomer with the nonhalogenated arene ring ligated to the metal center. Similarly, tricarbonyl[(1′,2′,3′,4′,5′,6′‐η)‐4‐fluoro‐1,1′‐biphenyl]chromium(0) crystallizes as the more stable isomer with the phenyl ring bonded to the Cr0 center. The arene–arene dihedral angles in these complexes are 55.77 (4) and 52.4 (5)°, respectively. Structural features of these complexes are compared to those of the DFT‐optimized geometries of ten tricarbonyl[(η6‐C6H5)(4‐F‐C6H4)]chromium model complexes. The solid‐state structures of the free ligands 2‐fluoro‐1,1′‐biphenyl and 4‐fluoro‐1,1′‐biphenyl, both C12H9F, exhibit arene–arene dihedral angles of 54.83 (7) and 0.71 (8)°, respectively. The molecules of the free ligands occupy crystallographic twofold axes and exhibit positional disorder. Weak intermolecular C—H…F interactions are observed in all four structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号