首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The magnetic properties of the dinuclear and tetranuclear nickel(II) tetrazolato complexes [Ni2L(RCN4)][BPh4] (R = H ( 4 ), Me ( 5 ), Ph ( 6 )) and [(Ni2L)2(1,4‐(CN4)2‐C6H4)][BPh4]2 ( 7 ), where (L)2– represents a 24‐membered macrocyclic N6S2 supporting ligand, are reported. Analysis of temperature‐dependent magnetic susceptibility measurements over the temperature range from 2 to 300 K revealed the presence of weak ferromagnetic exchange interactions between the NiII ions in the binuclear [Ni2L(μ‐L′)]+ subunits with magnetic exchange coupling constant values of J1 = 13.5 cm–1 for 4 , J1 = 20.0 cm–1 for 5 , J1 = 19.2 cm–1 for 6 , and J1 = 15.2 cm–1 for 7 ( H = –2JS1S2). The exchange coupling J2 across the bistetrazolato bridge in 7 is less than 0.1 cm–1, which suggests that no significant interdimer coupling occurs in this compound. The synthesis and crystal structure of the new complex 7 ·2MeCN is also reported.  相似文献   

2.
The metal complexes [Ni{N(Ar)C(R)C(H)Ph}2) ( 2 ) (Ar = 2,6‐Me2C6H3, R = SiMe3), [Ti(Cp2){N(R)C(But)C(H)R}] ( 3 ), M{N(R)C(But)C(H)R}I [M = Ni ( 4 a ) or Pd ( 4 b )] and [M{N(R)C(But)C(H)R}I(PPh3)] [M = Ni ( 5 a ) or Pd ( 5 b )] have been prepared from a suitable metal halide and lithium precursor of ( 2 ) or ( 3 ) or, alternatively from [M(LL)2] (M = Ni, LL = cod; M = Pd, LL = dba) and the ketimine RN = C(But)CH(I)R ( 1 ). All compounds, except 4 were fully characterised, including the provision of X‐ray crystallographic data for complex 5 a .  相似文献   

3.
A series of NiII and PdII complexes with pyrene‐based thiosemicarbazones were conveniently prepared. The crystal structures of Ni(L2)2 , Pd(L1)2 , and Pd(L2) 2 were determined. X‐ray crystallographic analysis reveals that the complexes are of mononuclear structure with two pyrenyl rings cofacially aligned. The photoluminescence spectra of the complexes exhibit moderate characteristic excimeric emissions arising from intramolecular π–π stacking between pyrenyl rings.  相似文献   

4.
N‐(Dialkylthiocarbamoyl)benzimidoyl chlorides react with o‐(salicylidenimine)benzylamine with formation of a novel class of tetradentate benzamidine ligands (H2LEt and H2LMorph), which readily react with Ni(CH3COO)2, [PdCl2(CH3CN)2], and [PtCl2(PPh3)2] under formation of complexes of the composition [M(LR)] [M = Ni ( 4 ), Pd ( 5 ), Pt ( 6 )]. In all complexes, H2LR is doubly deprotonated and bonded to the metal ion via its N2OS donor set and establishes a distorted square‐planar coordination sphere. The antiproliferative effects of the compounds on MCF‐7 and Hep‐G2 cells were studied. The complexes of H2LMorph are generally more active than those of H2LEt. While H2LEt and its complexes exhibit stronger effects on the Hep‐G2 line, the corresponding compounds of H2LMorph show almost equal effects on the two cell lines. In each series of compounds, the cytotoxicity increases in the order H2LR << 4 < 5 < 6 .  相似文献   

5.
Results of propene polymerization in the presence of two known octahedral C2‐symmetric Zr complexes bearing tetradentate [ONNO]‐type ligands are reported for the first time. Depending on the steric hindrance at the active metal, isotactic site‐controlled or weakly syndiotactic chain‐end‐controlled polymers were obtained, in both cases via highly regioselective 1,2 (primary) monomer insertion. In this respect, the complexes mimic the behavior of the active Ti species on the surface of the heterogeneous Ziegler‐Natta catalysts of which they might represent good structural models.  相似文献   

6.
A series of novel vanadium(III) complexes bearing heteroatom‐containing group‐substituted salicylaldiminato ligands [RN?CH(ArO)]VCl2(THF)2 (Ar = C6H4, R = C3H2NS, 2a ; C7H4NS, 2c ; C7H5N2, 2d ; Ar = C6H2tBu2 (2,4), R = C3H2NS, 2b ) have been synthesized and characterized. Structure of complex 2c was further confirmed by X‐ray crystallographic analysis. The complexes were investigated as the catalysts for ethylene polymerization in the presence of Et2AlCl. Complexes 2a–d exhibited high catalytic activities (up to 22.8 kg polyethylene/mmolV h bar), and affording polymer with unimodal molecular weight distributions at 25–70 °C in the first 5‐min polymerization, whereas produced bimodal molecular weight distribution polymers at 70 °C when polymerization time prolonged to 30 min. The catalyst structure plays an important role in controlling the molecular weight and molecular weight distribution of the resultant polymers produced in 30 min polymerization. In addition, ethylene/hexene copolymerizations with catalysts 2a–d were also explored in the presence of Et2AlCl, which leads to the high molecular weight and unimodal distributions copolymers with high comonomer incorporation. Catalytic activity, comonomer incorporation, and polymer molecular weight can be controlled over a wide range by the variation of catalyst structure and the reaction parameters, such as comonomer feed concentration, polymerization time, and polymerization reaction temperature. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3573–3582, 2009  相似文献   

7.
A new bis(phenoxy‐imine)Zr complex has been developed. This complex in conjunction with iBu3Al/Ph3CB(C6F5)4 at 70°C produces ultrahigh‐molecular‐weight amorphous ethylene/propylene copolymer with a weight‐average molecular weight of 10 200 000 g/mol versus polystyrene standards, which represents the highest molecular weight known for linear, synthetic copolymers to date.  相似文献   

8.
6‐Benzimidazolylpyridyl‐2‐carboximidic half‐titanocene complexes, Cp′TiLCl (Cp′ = C5H5, MeC5H4, C5Me5, L = 6‐benzimidazolylpyridine‐2‐carboxylimidic, C1–C13 ), were synthesized and characterized along with single‐crystal X‐ray diffraction. The half‐titanocene chlorides containing substituted cyclopentadienyl groups, especially pentamethylcyclopentadienyl groups were more stable, while those without substituents on the cyclopentadienyl groups were easily transformed into their dimeric oxo‐bridged complexes, (CpTiL)2O ( C14 and C15 ). In the presence of excessive amounts of methylaluminoxane (MAO) or modified methylaluminoxane (MMAO), all half‐titanocene complexes showed high catalytic activities for ethylene polymerization. The substituents on the Cp groups affected the catalytic behaviors of the complexes significantly, with less substituents favoring increased activities and higher molecular weights of the resultant polyethylenes. Effects of reaction conditions on catalytic behaviors were systematically investigated with catalytic systems of mononuclear C1 and dimeric C14 . With C1 /MAO, large MAO amount significantly increases the catalytic activity, while the temperature only has a slight effect on the productivity. In the case of C14 /MAO catalytic system, temperature above 60 °C and Al/Ti value higher than 5000 were necessary to observe good catalytic activities. In both systems, higher reaction temperature and low cocatalyst amount gave the polyethylenes with higher molecular weights. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3396–3410, 2008  相似文献   

9.
Ethylene–propylene copolymerization, using [(Ph)NC(R2)CHC(R1)O]2TiCl2 (R1 = CF3, Ph, or t‐Bu; R2 = CH3 or CF3) titanium complexes activated with modified methylaluminoxane as a cocatalyst, was investigated. High‐molecular‐weight ethylene–propylene copolymers with relatively narrow molecular weight distributions and a broad range of chemical compositions were obtained. Substituents R1 and R2 influenced the copolymerization behavior, including the copolymerization activity, methylene sequence distribution, molecular weight, and polydispersity. With small steric hindrance at R1 and R2, one complex (R1 = CF3; R2 = CH3) displayed high catalytic activity and produced copolymers with high propylene incorporation but low molecular weight. The microstructures of the copolymers were analyzed with 13C NMR to determine the methylene sequence distribution and number‐average sequence lengths of uninterrupted methylene carbons. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5846–5854, 2006  相似文献   

10.
A series of novel vanadium(III) complexes bearing tridentate phenoxy‐phosphine [O,P,O] ligands and phosphine oxide‐bridged bisphenolato [O,P?O,O] ligands, which differ in the steric and electronic properties, have been synthesized and characterized. These complexes were characterized by Fourier transform infrared spectroscopy (FTIR) and mass spectra as well as elemental analysis. Single‐crystal X‐ray diffraction revealed that complexes 3c and 4e adopt an octahedral geometry around the vanadium center. In the presence of Et2AlCl as a cocatalyst, these complexes displayed high catalytic activities up to 22.8 kg PE/mmolV.h.bar for ethylene polymerization, and produced high‐molecular‐weight polymers. Introducing additional oxygen atom on phosphorus atom of [O,P,O] ligands has resulted in significant changes on the aspect of steric/electronic effect, which has an impact on polymerization performance. 3c and 4c /Et2AlCl catalytic systems were tolerant to elevated temperature (70 °C) and yielded unimodal polyethylenes, indicating the single‐site behavior of these catalysts. By pretreating with equimolar amounts of alkylaluminums, functional α‐olefin 10‐undecen‐1‐ol can be efficiently incorporated into polyethylene chains. 10‐Undecen‐1‐ol incorporation can easily reach 14.6 mol % under the mild conditions. Other reaction parameters that influenced the polymerization behavior, such as reaction temperature, Al/V (molar ratio), and comonomer concentration, are also examined in detail. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

11.
The crystal and molecular structure of [Pd(iPr2dtc)2] (dtc = dithiocarbamate) have been determined by X‐ray crystallography. The unit cell of the crystal structure consists of two discrete monomelic molecules of [Pd(iPr2dtc)2]. The Pd(II) ion has an square‐planar geometry. The electronic and IR spectral data are in agreement with the X‐ray structure. The TG data indicate slight degradation of a few percent.  相似文献   

12.
The complexes of 2,11‐dithia‐4,5,6,7,8,9‐hexahydro[3.3]paracyclophane (dthhpcp) with Cu(I), i.e. [Cu2I2(dthhpcp)2]·2H2O 1 , or with Ag(I), i.e. [Ag(dthhpcp)(NO3)]thf 2 and [Ag(dthpcp)(CF3COO)] 3 , were prepared for structural study by single‐crystal X‐ray diffraction analysis. For these three complexes, dthhpcp serves as a bridging group in the polymeric structure through bridging sulfur atoms via metal, while the bonding of anion with the second metal atom forms the multi‐diminished structures. Complex 1 is a novel two‐dimensional coordination polymer composed of Cu6 motifs, in which Cu2I2 formed a square planar unit to link the dthhpcp molecule. The two oxygen atoms of the nitrate anion as a bridge for two Ag atoms in complex 2 provides a three‐dimensional channel framework of silver(I) with a tetrahydrofuran molecule as a guest inside the open cavities. In contrast, the analogous reaction with silver triflouroacetate gave a complex 3 , which is composed of infinite linear chains of‐Ag‐dthhpcp‐Ag‐dthhpcp‐ along the a axis. Unit cell data: complex 1 , orthorhombic system, space group P2(1)2(1)2(1), a = 19.2982(11) Å b = 16.5661(10) Å, c = 25.3006(15) Å, β = 90°, Z = 8; complex 2 , orthorhombic system, space group Pna2(1), a = 8.8595(6) Å, b = 12.6901(9) Å, c = 19.8449(14) Å, β = 90°, Z = 4; complex 3 , monoclinic system, space group P2(1)/n, a = 8.845(3) Å, b = 20.841(6) Å, c = 11.061(3) Å, β = 107.832(6)°, Z = 4.  相似文献   

13.
The reaction of 2,2′‐Bis(2N‐(1,1′,3,3′‐tetramethyl‐guanidino))diphenylene‐amine (TMG2PA) ( 1 ) with CuI in MeCN results in the formation of [CuII(TMG2PAamid)I] ( 2 ) indicatingthat CuI is the target of an oxidative attack of the N‐H proton of the ligand which itself is converted to molecular hydrogen. In contrast, if [Cu(MeCN)4][PF6] is used as the CuI source, [CuI2(TMGbenz)2][PF6]2 ( 3 ) is obtained instead. The use of the non‐coordinating counterion [PF6] apparently prevents CuI from oxidation but induces itself a cyclisation reaction within the ligand which results in the formation of a benzimidazole‐guanidine ligand.  相似文献   

14.
Ethylene polymerizations were performed using catalyst based on titanium tetrachloride (TiCl4) supported on synthesized poly(methyl acrylate‐co‐1‐octene) (PMO). Three catalysts were synthesized by varying TiCl4/PMO weight ratio in chlorobenzene resulting in incorporation of titanium in different percentage as determined by UV‐vis spectroscopy. The coordination of titanium with the copolymer matrix was confirmed by FTIR studies. The catalysts morphology as observed by SEM was found to be round shaped with even distributions of titanium and chlorine on the surface of catalyst. Their performance was evaluated for atmospheric polymerization of ethylene in n‐hexane using triethylaluminum as cocatalyst. Catalyst with titanium incorporation corresponding to 2.8 wt % showed maximum activity. Polyethylenes obtained were characterized for melting temperature, molecular weight, morphology and microstructure. The polymeric support utilized for TiCl4 was synthesized using activators regenerated by electron transfer (ARGET) Atom Transfer Radical Polymerization (ATRP) of methyl acrylate (MA) and 1‐octene (Oct) with Cu(0)/CuBr2/tris(2‐(dimethylamino)ethyl)amine (Me6TREN) as catalyst and ethyl 2‐bromoisobutyrate (EBriB) as initiator at 80 °C. The copolymer poly(methyl acrylate‐1‐octene; PMO) obtained showed monomodal curve in Gel Permeation Chromatography (GPC) with polydispersity of 1.37 and copolymer composition (1H NMR; FMA) of 0.75. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7299–7309, 2008  相似文献   

15.
Bis(β‐enaminoketonato) vanadium(III) complexes ( 2a–c ) [O(R1)C?C(H)xC(R2)?NC6H5]2VCl(THF) and the corresponding vanadium(IV) complexes ( 3a–c ) [O(R1)C?C(H)xC(R2)? NC6H5]2VO (R1 = ? (CH2)4? , R2 = H, x = 0, a ; R1 = ? C6H5, R2 = H, x = 1, b ; R1 = ? C6H5, R2 = ? C6H5, x = 1, c ) have been synthesized from VCl3(THF)3 and VOCl2(THF)2, respectively, by treating with 2.0 equivalent β‐enaminoketonato ligands in tetrahydrofuran. Structures of 2b and 3a–c were further confirmed by X‐ray crystallographic analysis. The complexes were investigated as the catalysts for ethylene polymerization in the presence of Et2AlCl. Complexes 2a–c and 3a–c exhibited high catalytic activities (up to 23.76 kg of PE/mmolV h bar), and afforded polymers with unimodal molecular weight distributions at 70 °C indicating the good thermal stability. The catalytic behaviors were influenced not only by the oxidation state of the catalyst precursors but also by the ligand structures. Complexes 2a–c and 3a–c were also effective catalyst precursors for ethylene/1‐hexene copolymerization. The influence of polymerization parameters such as reaction temperature, Al/V molar ratio and hexene feed concentration on the ethylene/hexene copolymerization behaviors have bee also investigated in detail. In addition, the agents such as AlMe3, AliBu3, MeMgBr, MgCl2, and ZnEt2 were applied to control the molecular weight and molecular weight distribution modal. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3062–3072, 2010  相似文献   

16.
Bis(salicylaldiminate)copper(II) complexes, when activated with methylaluminoxane, catalyzed the homo‐ and copolymerizations of ethylene and methyl methacrylate (MMA). The activity in the MMA homopolymerization was influenced by the electronic and steric characteristics of the Cu(II) precursors as well as the cocatalyst concentration. The same systems revealed modest activity also in the homopolymerization of ethylene, giving a highly linear polyethylene, and in its copolymerization with MMA. These copolymers exhibited a very high content of polar groups (MMA units > 70 mol %) and were characterized by a high molecular weight and polydispersity. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1134–1142, 2007  相似文献   

17.
The series of binuclear Cu(II) and Ni(II) complexes with an asymmetrical exchange fragment based on 2,6‐diformyl‐4‐methylphenol bishydrazone has been synthesized for the first time. The compositions and structures of both ligands and its complexes have been established with the data of IR, 1H NMR, and extended X‐ray absorption fine structure (EXAFS) spectroscopical studies as well as magnetic measurements. The structure of [Ni2L3(μ‐Pz)] · 2CH3OH (L = triply deprotonated form of bishydrazone, Pz = pyrazol) was confirmed by X‐ray crystallographic analysis. In this complex, the coordination environment of two nickel ions is quite different, one nickel atom is square‐planar and the other is distorted octahedral coordinated. The values of exchange parameter calculated in terms of HDVV theory have been compared with the features of an asymmetrical exchange fragment's electronic and geometrical structure.  相似文献   

18.
Summary: The bis(imino)pyridyl vanadium(III ) complex [VCl3{2,6‐bis[(2,6‐iPr2C6H3)NC(Me)]2(C5H3N)}] activated with different aluminium cocatalysts (AlEt2Cl, Al2Et3Cl3, MAO) promotes chemoselective 1,4‐polymerization of butadiene with activity values higher than classical vanadium‐chloride‐based catalysts. The polymer structure depends on the nature of the cocatalyst employed. The MAO‐activated complex was also found to be active in ethylene‐butadiene copolymerization, producing copolymers with up to 45 mol‐% of trans‐1,4‐butadiene. Crystalline polyethylene and trans‐1,4‐poly(butadiene) segments were detected in these copolymers by DSC and 13C NMR spectroscopy.

  相似文献   


19.
Five novel vanadium(III) complexes [PhN = C(R2)CHC(R1)O]VCl2(THF)2 ( 4a : R1 = Ph, R2 = CF3; 4b : R1 = t‐Bu, R2 = CF3; 4c : R1 = CF3, R2 = CH3; 4d : R1 = Ph, R2 = CH3; 4e : R1 = Ph, R2 = H) have been synthesized and characterized. On activation with Et2AlCl, all the complexes, in the presence of ethyl trichloroacetate (ETA) as a promoter, are highly active precatalysts for ethylene polymerization, and produce high molecular weight and linear polymers. Catalyst activities more than 16.8 kg PE/mmolV h bar and weight‐average molecular weights higher than 173 kg/mol were observed under mild conditions. The copolymerizations of ethylene and norbornene or 1‐hexene with the precatalysts were also explored, which leads to high molecular weight copolymers with high comonomer incorporation. Catalyst activity, comonomer incorporation, and polymer molecular weight as well as polydispersity index can be controlled over a wide range by the variation of precatalyst structure and the reaction parameters such as Al/V molar ratio, comonomer feed concentration, and polymerization temperature. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2038–2048, 2008  相似文献   

20.
Copolymerization of ethylene with isoprene (IP) catalyzed by 1,4‐dithabutanediyl‐linked bis(phenolato) titanium complexes 1 and 2 and methylaluminoxane (MAO) produced exclusively ethylene‐IP copolymers with good activity. The copolymer microstructure can be varied by changing the ratio between the monomers in the copolymerization feed, affording copolymers with IP content ~60%. The copolymer microstructure was fully elucidated by 13C‐NMR spectroscopy of the copolymers with various IP content revealing a strong tendency to the alternating microstructure. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4200–4206, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号