首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The facile one‐pot reaction of the stable N‐heterocyclic silylene LSi: 1 (L?(ArN)C(?CH2) CH?C(Me)(NAr), Ar=2,6‐iPr2C6H3) with Me2Zn, Me3Al, H3Al‐NMe3, and MeLi has been investigated. The silicon(II) atom in 1 is capable of insertion into the corresponding M? C and Al? H bonds under very mild reaction conditions. Thus, Me2Zn furnishes the bis(silyl) zinc complex LSi(Me)ZnSi(Me)L 2 as the sole product, irrespective of the molar ratio of the starting materials applied. Moreover, the reactions of 1 with Me3Al, H3Al‐NMe3, and MeLi lead directly to the 1,1‐addition products LSi(Me)(Al(thf)Me2) 3 , LSi(H)(AlH2(NMe3)) 4 , and LSi(Me)Li(thf)3 5 , respectively. All new compounds 2 – 5 were fully characterized by multinuclear NMR spectroscopy, mass spectrometry, elemental analyses, and single‐crystal X‐ray diffraction analyses.  相似文献   

2.
Reactions of Me3Al, i-Bu3Al, Me2AlCl and Me2AlCCMe with 2,6-di-t-butyl-4-methylphenol have been studied at different molar ratios of the reactants.It is found that in the reaction with the phenol, trimethylaluminium forms monomeric methylaluminium diphenoxide; triisobutylaluminium gives both monomeric mono- and di-phenoxyaluminium (depending on molar ratios of the reactants) and dimethylchloroaluminium forms dimeric methylphenoxyaluminium chloride.It is found that methylpropynylaluminium phenoxide is unstable and disproportionates in hydrocarbon solutions.The mechanisms of some of these reactions are suggested.  相似文献   

3.
Substitution Reactions of Bis(trimethylelement)carbodiimides of Silicon and Germanium with Metal Chlorides and Dimethylmetalchlorides of Sb, Al, Ga, and In The reaction of Me3Ge? N?C?N? GeMe3 (Me?CH3) with SbCl5 in a 1 : 1 molar ratio forms dimeric Cl4SbNCNGeMe3 in high yields. The corresponding compounds (X2MNCNSiMe3)2–3 (with X?Cl, Me and M = Al, Ga), formed by reactions of X2MCl and Me3SiNCNSiMe3, are less stable and tend to condensations, eliminating Me3SiX. The carbodiimide derivates (Me2MNCNEMe3)2–3 (with E = Si, Ge) are also available in aprotic solvents from polymeric LiNCNEMe3 and Me2MCl (M = Al, Ga, In). According to the IR and Raman spectra the low associated substitution products consists of cyclic ring skeletons and asymmetric > N? C?N? EMe3 units with cyanamide conformation.  相似文献   

4.
Preparation, Properties, and Molecular Structures of Dimethylmetal Alkoxides and Amides of Aluminium and Gallium Dimethylaluminium‐ ( 1 ) and Dimethylgallium‐o‐methoxyphenyl‐1‐ethoxide ( 2 ) were obtained by reaction of Me3Al and Me3Ga respectively with o‐Methoxyphenyl‐1‐ethanol in n‐pentane. Dimethylaluminium‐ ( 3 ) and dimethylgallium‐o‐methoxyphenyl‐2‐ethylamide ( 4 ) were prepared by treatment of Me2AlCl and Me2GaCl respectively with Lithium‐o‐methoxyphenyl‐2‐ethylamide. Trimethylgallium‐o‐methoxyphenylmethylamine‐Adduct ( 5 ) was isolated using reaction of Me3Ga with the corresponding amine. The compounds were characterised by 1H‐, 13C‐, and 27Al n.m.r. spectroscopy. The molecular structures of 2 and 5 were determined by X‐ray diffraction. Compounds 1 – 4 form brigded dimeric molecules. The bond distances of the central Ga2O2 ring in 2 correspond to those of compounds of similar structure.  相似文献   

5.
The reaction of mono- and disubstituted alkynes with CH2I2-R3Al (R = Me, Et, i-Bu) was studied. It was found that the reaction of alkynes with CH2I2 in the presence of Me3Al gives β-iodoethyl-substituted cyclopropanes. The use of Et3Al or i-Bu3Al affords exclusively cyclopropylic organoaluminum compounds.  相似文献   

6.
The reactions of anisole with organoaluminium compounds MenAlX3−n have been investigated.The formation of a complex is the first reaction step, followed by cleavage and elimination of the gases MeX and small amounts of hydrocarbons. The yield of the gases and the cleavage rate decreases in the order: AlCl3 >/ MeAlCl2 > Me2AlCl > Me3Al and Me2AlI > Me2AlCl > Me2AlBr. For most of the investigated reactions a marked decrease in gas evolution was observed after a short period of time. This is explained by the formation of an almost inactive mixed dimer (I) which at the
reaction temperature is more stable than the Me2(Cl)Al : O(Me)Ph complex. It is suggested that dimer I is formed after the intramolecular reaction of the 2 : 1 complex II after elimination of MeX.
  相似文献   

7.
The Ni- or Pd-catalyzed reaction of alkenyl iodides with Me3SiCH2Mgcl provides various types of allytrimethylsilanes in excellent yields in a highly stereo- and regioselective manner, while the Zr-catalyzed carboalumination of Me3SiCH2CCH followed by replacement of Al with carbon groups by known reactions produces allylsilanes represented by 2.  相似文献   

8.
(N,N,N′,N′ -tetramethylethylendiamine) di(tert-butyl)aluminium Cations — Molecular Structure of [(Me3C)2Al(TMEDA)][(Me3C)2AlBr2]? Dimeric di(tert-butyl)aluminium halides (Me3C)2AlX (X = Cl, Br) react with N,N,N′,N′ -tetramethylethylendiamine (TMEDA) to give three compounds: the salt-like [(Me3C)2Al(TMEDA)][(Me3C)2AlX2]? 1 , characterized by crystal structure determination, and [(Me3C)2Al(TMEDA)]X? 3 both with chelating amine, and the more covalent, pentane soluble (Me3C)2AlX(TMEDA) 2 with TMEDA bound by only one nitrogen atom. The reaction resembles the symmetrical and unsymmetrical cleavage of diborane(6). 3 (X = Cl) is also formed by treatment of 1 with boiling n-hexane in the presence of TMEDA over a period of 24 hours, while for X = Br the more covalent 2 is the main product under similar conditions. In solution 2 decomposes slowly yielding different products in dependency of the solvent: in benzene 3 and in n-pentane 1 are formed.  相似文献   

9.
Halide Ions as Catalyst: Metalcentered C–C Bond Formation Proceeded from Acetonitril AlMe3 reacts at 20 ?C in acetonitrile to the complex [Me3Al(NCMe)] ( 1 ). By addition of cesium halides (X = F, Cl, Br) a trimerisation to the heterocycle [Me2Al{HNC(Me)}2C(CN)] ( 2 ) has been observed. The reaction might be carried out under catalytic conditions (1–2 mol% CsX). The gallium complex [Me2Ga{HNC(Me)}2 · C(CN)] ( 3 ), generated under similar reaction conditions, can be converted to the silylated compound [Me2Ga{Me3SiNC(Me)}2C(CN)] ( 4 ) by successive treatment with two equivalents n‐butyllithium and Me3SiCl. 3 reacts under hydrolysis conditions (1 M hydrochloric acid) to the iminium salt [{H2NC(Me)}2C(CN)]Cl ( 5 ). A mixture of H2O, Ph2PCl and 3 in THF/toluene leads in a unusual conversion to the diphospane derivative [Ph2P–P(O)(Me2GaCl)] ( 6 ). 1 , 2 , 4 , 5 and 6 have been characterized by NMR, IR and MS techniques. X‐ray structure analyses were performed with 1 , 2 , 4 and 6 · 0.5 toluene. According this 1 possesses an almost linear axis AlNCC [Al1–N1–C3: 179,5(2)?; N1–C3–C4: 179,7(4)?]. 2 is an AlN2C3 six‐membered heterocycle with two iminium fuctions. One N–H group is responsible for a intermolecular chain‐formation through hydrogen bridges to an adjacent nitrile group along the direction [010]. The basic structural motif of the heterocycle 3 has been maintained after silylation to 4 . In 6 · 0.5 toluene an unit Me2GaCl, originated from 3 , is coordinated to the oxygen atom of the diphosphane oxide Ph2P–P(O)Ph2.  相似文献   

10.
Several control experiments were designed to optimize the reaction of 2,3-epoxy-1-propanol with R3Al (R = Me, Et or iBu) and to probe for the nature of aluminium-bound alkyl groups that influence the reactivity and selectivity. The reported studies revealed that the Et3Al mediated reaction leads to the C-2 product in contrast to the well-known C-3 substitution promoted by Me3Al.  相似文献   

11.
Investigations on the Reactivity of [Me2AlP(SiMe3)2]2 with Base‐stabilized Organogalliumhalides and ‐hydrides [Me2AlP(SiMe3)2]2 ( 1 ) reacts with dmap?Ga(Cl)Me2, dmap?Ga(Me)Cl2, dmap?GaCl3 and dmap?Ga(H)Me2 with Al‐P bond cleavage and subsequent formation of heterocyclic [Me2GaP(SiMe3)2]2 ( 2 ) as well as dmap?AlMexCl3?x (x = 3 8 ; 2 3 ; 1 4 ; 0 5 ). The reaction between equimolar amounts of dmap?Al(Me2)P(SiMe3)2 and dmap?Ga(t‐Bu2)Cl yield dmap?Ga(t‐Bu2)P(SiMe3)2 ( 6 ) and dmap?AlMe2Cl ( 3 ). 2 – 8 were characterized by NMR spectroscopy, 2 and 6 also by single crystal X‐ray diffraction.  相似文献   

12.
《Polyhedron》1988,7(14):1289-1298
The following adducts of Group III trialkyls with phosphines have been prepared, either by direct reaction in hydrocarbon solution or by displacement of ether from the metal trialkyl etherate: Me3M·PPh3 (M = Ga, In); Me3In·P(2-MeC6H4)3; (R3M)2·(Ph2PCH2)2 (R = Me, M = Al, Ga, In; R = Et, M = Ga, In; R = Bui, M = Al); (Me3M)3·(Ph2PCH2CH2)2PPh (M = Al, Ga, In) and (Me3M)4·(Ph2PCH2CH2PPhCH2)2 (M = Al, Ga, In). The compounds were analysed by 1H and 31P NMR spectra of (Me3M)2·(Ph2PCH2)2 (M = Ga, In) showed little change between 193 K and room temperature. Thermal dissociation of the adducts in vacuo gave the free metal trialkyl with no detectable contamination by the respective phosphine. Crystals of (Me3M)2·(Ph2PCH2)2 (M = Al, Ga, In) are iso-structural and the molecules contain two distorted tetrahedral metals bridged by the (Ph2PCH2)2; the MP distances are 2.544(4), 2.546(4) and 2.755(4) Å, respectively. The X-ray crystal structure of (Me3Al)3·(Ph2PCH2CH2)2PPh shows the molecule to contain distorted tetrahedral aluminium atoms bonded to each of the three phosphorus atoms, with AlP distances of 2.536(9) and 2.510(9) Å for the terminal and central moieties, respectively; the unit cell contains two such molecules plus one benzene molecule (the crystallizing solvent).  相似文献   

13.
Preparation, Properties, and Molecular Structures of Dimethylaminomethyl Ferrocenyl Compounds of selected Elements of Group 13 and 14 Dimethylmetalchlorides of gallium and indium react with dimethylaminomethylferrocenyllithium (FcNLi) to give the corresponding dimethylmetaldimethylaminomethylferrocenes 1 and 2 [Me2MFcN; M=Ga, In]. In a similar manner dialkylmetaldichlorides of germanium and tin yield the expected chlordialkylmetaldimethylaminomethylferrocenes 3 – 5 [R2(Cl)MFcN; M=Ge; R = Me ( 3 ), M=Sn; R=Me ( 4 ), Ph ( 5 )]. In a reaction of Me3Al and Me2AlCl with dimethylaminomethylferrocene the formation of the 1 : 1 adducts 7 and 8 could be observed. All compounds were characterised by 1H and 13C nmr spectroscopy. The molecular structures of 1 , 3 , 4 and 7 were determined. 3 and 4 build in contrast to 1 monomeric molecules with chelat rings as a result of the M–N coordination. Compound 7 consist of monomeric molecules with 4 coordinated Al atoms.  相似文献   

14.
Reaction energy profiles for [Me2AlNH2]3 have been computationally explored by using density functional theory. Both intra‐ and intermolecular methane elimination reactions, as well as Al?N bond‐breaking pathways, were considered. The results show that the energy required for Al?N bond breaking in cyclic [Me2AlNH2]3 is of the same order of magnitude as the activation energies for the first (limiting) step of methane elimination (for both mono‐ and bimolecular mechanisms). Thus, dissociative and associative reaction pathways are competitive. Low‐temperature/high‐pressure conditions will favor the bimolecular pathway, whereas at high temperatures, either intramolecular methane elimination or Al?N bond‐breaking dissociative pathways will be operational.  相似文献   

15.
Synthesis of a Functional Aluminium Alkynide, Me3C‐C≡C‐AlBr2, and its Reactions with the Bulky Lithium Compound LiCH(SiMe3)2 Treatment of aluminium tribromide with the lithium alkynide (Li)C≡C‐CMe3 afforded the aluminium alkynide Me3C‐C≡C‐AlBr2 ( 1 ) in an almost quantitative yield. 1 crystallizes with trimeric formula units possessing Al3C3 heterocycles and the anionic carbon atoms of the alkynido groups in the bridging positions. A dynamic equilibrium was determined in solution which probably comprises trimeric and dimeric formula units. Reaction of 1 with one equivalent of LiCH(SiMe3)2 yielded the compound [Me3C‐C≡C‐Al(Br)‐CH(SiMe3)2]2 ( 2 ), which is a dimer via Al‐C‐Al bridges. Two equivalents of the lithium compound gave a mixture of four main‐products, which could be identified as 2 , Li[Me3C‐C≡C‐Al{CH(SiMe3)2}3] ( 3 ), Me3C‐C≡C‐Al[CH(SiMe3)2]2 ( 4 ), and Al[CH(SiMe3)2]3. The lithium atom of 3 is coordinated by the C≡C triple bond and an inner carbon atom of one bis(trimethylsilyl)methyl group. Further interactions were observed to C‐H bonds of methyl groups.  相似文献   

16.
Reaction of [(Me3Si)2CH]2Al? CH2? Al [CH(SiMe3)2]2 with Neopentyllithium: Formation of {[(Me3Si)2CH]2Al? CH2? Al [CH(SiMe3)2]2CH2CMe3} ? [Li(TMEDA)2]⊕ The recently synthesized methylene bridged dialuminium compound [(Me3Si)2CH]2Al? CH2? Al [CH(SiMe3)2]2 reacts with neopentyl lithium in the presence of TMEDA to give the stable {[(Me3Si)2CH]2Al? CH2? Al [CH(SiMe3)2]2CH2 · CMe3}? [Li(TMEDA)2]⊕ decomposing at 115°C. The aluminium atoms therein are not additionally bridged, but the new substituent is occupying a terminal position as detected by crystal structure determination. A compound is formed containing a saturated, fourfold coordinated neighbouring a formally unsaturated, threefold coordinated aluminium atom. Due to high sterical restrictions the Al? C bonds are lengthened up to 209.0(3) pm at the alanate site and the Al? C? Al angle in the methylene bridge is extraordinarily enlarged to 144.4(2)°.  相似文献   

17.
The Hydroalumination of 1,1,4,4‐Tetramethyl‐2,3‐diazabutadiene by Dialkylaluminium Hydrides – Synthesis of Dialkylaluminium Hydrazonides 1,1,4,4‐Tetramethyl‐2,3‐diazabutadiene reacted with dimethylaluminium hydride by hydroalumination of only one C=N double bond. The hydrazone derivative [Me2Al–N(CHMe2)–N=CMe2]2 ( 1 ) was formed which gave a dimer possessing a six‐membered Al2N4 heterocycle. The hydroalumination of both C=N double bonds was not observed. Also an excess of di(tert‐butyl)‐ or bis(trimethylsilylmethyl)aluminium hydride afforded only the product of a single hydroalumination step, a second dialkylaluminium hydride molecule was attached via a coordinative interaction between its central aluminium atom and the nitrogen atom of the C=N double bond and in addition via a 3 c‐2 e Al–H–Al bond. Compounds [(Me3C)2Al][(Me3C)2AlH]N(CHMe2)NCMe2 ( 2 ) and [(Me3SiCH2)2Al][(Me3SiCH2)2AlH]N(CHMe2)NCMe2 ( 3 ) were formed which have five‐membered Al2N2H heterocycles. Thermolysis of 2 gave by C–H activation compound [(Me3C)2Al]2[CH2C(Me)=N–]2 ( 4 ) in trace amounts which possesses two anellated AlN2C2 rings with a common N–N bond. In contrast, the thermal decomposition of 3 yielded by the cleavage of the N–N bond a dimeric dialkylaluminium methylideneamide ( 5 ) which has two intact C=N double bonds. Up to now our attempts to insert a C=N double bond into an Al–C bond remained unsuccessful, and only the formation of an adduct [(Me3C)3Al(–N=CMe2)2] ( 6 ) was observed upon treatment of tri(tert‐butyl)aluminium with the diazabutadiene derivative.  相似文献   

18.
Upon reaction of gaseous Me3SiF with the in situ prepared Lewis acid Al(ORF)3, the stable ion‐like silylium compound Me3Si‐F‐Al(ORF)3 1 forms. The Janus‐headed 1 is a readily available smart Lewis acid that differentiates between hard and soft nucleophiles, but also polymerizes isobutene effectively. Thus, in reactions of 1 with soft nucleophiles (Nu), such as phosphanes, the silylium side interacts in an orbital‐controlled manner, with formation of [Me3Si?Nu]+ and the weakly coordinating [F?Al(ORF)3] or [(FRO)3Al‐F‐Al(ORF)3] anions. If exchanged for hard nucleophiles, such as primary alcohols, the aluminum side reacts in a charge‐controlled manner, with release of FSiMe3 gas and formation of the adduct R(H)O?Al(ORF)3. Compound 1 very effectively initiates polymerization of 8 to 21 mL of liquid C4H8 in 50 mL of CH2Cl2 already at temperatures between ?57 and ?30 °C with initiator loads as low as 10 mg in a few seconds with 100 % yield but broad polydispersities.  相似文献   

19.
Hydrolysis of trimethylaluminum (Me3Al) in polar solvents can be monitored by electrospray ionization mass spectrometry (ESI-MS) using the donor additive octamethyltrisiloxane [(Me3SiO)2SiMe2, OMTS]. Using hydrated salts, hydrolytic methylaluminoxane (h-MAO) features different anion distributions, depending on the conditions of synthesis, and different activator contents as measured by NMR spectroscopy. Non-hydrolytic MAO was prepared using trimethylboroxine. The properties of this material, which contains incorporated boron, differ significantly from h-MAO. In the case of MAO prepared by direct hydrolysis, oligomeric anions are observed to rapidly form, and then more slowly evolve into a mixture dominated by an anion with m/z 1375 with formula [(MeAlO)16(Me3Al)6Me]. Theoretical calculations predict that sheet structures with composition (MeAlO)n(Me3Al)m are favoured over other motifs for MAO in the size range suggested by the ESI-MS experiments. A possible precursor to the m/z 1375 anion is a local minimum based on the free energy released upon hydrolysis of Me3Al.  相似文献   

20.
Trimethylstannyl- and Dimethylstannyl-substituted Pyrroles – Synthesis, Spectra, and Structures Monomeric trimethylstannyl pyrroles, Me3Sn? R (Me = CH3 and R = ? NC4H4, ? NC4H2Me2-2,5, ? NC4Me4-2,3,4,5, ? C4H3NMe-1), are synthesized by metathesis reactions from Me3SnCl with 1(N)- and 2(C)-lithium pyrroles, respectively. An almost similar procedure gives monomeric dimethylstannylbis(pyrroles), Me2SnR2 ( 1 a – 3 a ), from Me2SnCl2 and 1-Li-pyrrolides (1 : 2 molar ratio) in good yields. Lithiated 1,2,5-trimethylpyrrole and Me3SnCl forms the compound Me3Sn? CH2? C4H2Me(-5)NMe ( 8 ), the reaction of Me2SnCl2 with 2-lithium-1-methylpyrrole gives oligomeric [Me2Sn? C4H2NMe? ]x, ( 6 a ). The mass-, NMR, and vibrational spectra have been measured and discussed. The results of the X-ray structure determinations of Me3Sn? NC4H4 ( 1 ) and Me2Sn(? NC4Me4)2 ( 3 a ) are compared with the structures of the known dimethylmetal pyrroles of Al, Ga, and In.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号