首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Synthesis, Crystal Structures, and Vibrational Spectra of [(Mo6X)Y]2–; Xi = Cl, Br; Ya = NO3, NO2 By treatment of [(Mo6X)Y]2–; Xi = Ya = Cl, Br with AgNO3 or AgNO2 by strictly exclusion of oxygene in acetone the hexanitrato and hexanitrito cluster anions [(Mo6X)Y]2–, Ya = NO2, NO3 are formed. X-ray structure determinations of (Ph4As)2[(Mo6Cl)(NO3)] · 2 Me2CO ( 1 ) (monoclinic, space group P21/n, a = 12.696(3), b = 21.526(1), c = 14.275(5) Å, β = 115.02(2)°, Z = 2), (n-Bu4N)2[(Mo6Br)(NO3)] · 2 CH2Cl2 ( 2 ) (monoclinic, space group P21/n, a = 14.390(5), b = 11.216(5), c = 21.179(5)Å, β = 96.475(5)°, Z = 2) and (Ph4P)2[(Mo6Cl)(NO2)] (3) (monoclinic, space group P21/n, a = 11.823(5), b = 13.415(5), c = 19.286(5) Å, β = 105.090(5)°, Z = 2) reveal the coordination of the ligands via O atoms with (Mo–O) bond lengths of 2.11–2.13 Å, and (MoON) angles of 122–131°. The vibrational spectra of the nitrato compounds show the typical innerligand vibrations νas(NO2) (∼ 1500), νs(NO2) (∼ 1270) and ν(NO) (∼ 980 cm–1). The stretching vibrations ν(N=O) at 1460–1490 cm–1 and ν(N–O) in the range of 950–1000 cm–1 are characteristic for nitrito ligands coordinated via O atoms.  相似文献   

2.
Synthesis, Vibrational Spectra, and Crystal Structure of ( n ‐Bu4N)2[(W6Cl )F ] · 2 CH2Cl2 and 19F NMR Spectroscopic Evidence of the Mixed Cluster Anions [(W6Cl )F Cl ]2–, n = 1–6 The reaction of (n‐Bu4N)2[(W6Cl)Cl] with CF3COOH in dichloromethane gives intermediately a mixture of the cluster anions [(W6Cl)(CF3COO)Cl]2–, n = 1–6. By treatment with NH4F the outer sphere coordinated trifluoracetato ligands are easily substituted and the components of the series [(W6Cl)FCl], n = 1–6 are formed and characterized by their distinct 19F NMR chemical shifts. An X‐ray structure determination has been performed on a single crystal of (n‐Bu4N)2[(W6Cl)F] · 2 CH2Cl2 (orthorhombic, space group Pbca, a = 15.628(4), b = 17.656(3), c = 20.687(4) Å, Z = 4). The low temperatur IR (60 K) and Raman (20 K) spectra are assigned by normal coordinate analysis based on the molecular parameters of the X‐ray determination. The valence force constants are fd(WW) = 1.89, fd(WF) = 2.43 and fd(WCl) = 0.93 mdyn/Å.  相似文献   

3.
Synthesis, Crystal Structure, and Vibrational Spectra of (n-Bu4N)2[(Mo6I)(NCS)] By treatment of [(Mo6I)I]2– with (SCN)2 in dichloromethane at –20 °C the hexaisothiocyanato cluster anion [(Mo6I)(NCS)]2– is formed. The X-ray structure determination of (n-Bu4N)2[(Mo6I)(NCS)] · 2 Me2CO (monoclinic, space group P21/c, a = 13.168(5), b = 11.964(5), c = 24.636(5) Å, β = 104.960(5)°, Z = 2) shows, that the thiocyanate groups are coordinated exclusively via N atoms with Mo–N bond lengths of 2.141–2.150 Å, Mo–N–C angles of 166–178° and N–C–S-angles of 174–180°. The vibrational spectra exhibit characteristic innerligand vibrations at 2073–2054 (νCN), 846–844 (νCS) and 480–462 cm–1NCS).  相似文献   

4.
19F NMR Spectroscopic Evidence and Calculation of the Statistical Formation of Mixed Cluster Anions [(Mo6I Cl )F ]2?, n = 0–7, and Preparation of (TBA)2[(Mo6I )F ] The octa-μ3-iodo-hexafluoro-hexamolybdate(2?)ion [(Mo6I)F]2? is prepared for the first time. The system of the 21 innersphere mixed clusters (Mo6ICl)4+, n = 0–7 is formed by exchange of innersphere bound Cli against outersphere bound Ia on tempering solid [(Mo6Cl)I] at 400°C. Prolonged tempering leads to increasing average n values of the mixture, which is converted into the tetrabutylammonium salt (TBA)2[(Mo6ICl)F]. Using increments of chemical shifts and integral peak intensities the 54 19F-nmr signals of the 21 species (compound n = 8 is absent) are assigned and confirmed by the 2 D-19F/19F-COSY spectrum. From the measured intensities the distribution of the different compounds is determined and proves significant deviation from statistical occupation, revealing the preference of isomers with iodine atoms occupying edges of the innersphere cube and discrimination of those sharing diagonals of the faces. Moreover all compounds with n = 3 and 4 are present overaverage in comparison to the others.  相似文献   

5.
Preparation, Crystal Structures, Vibrational Spectra, and Normal Coordinate Analysis of [(Mo6Br )Y ]2?; Ya ? CN, NCS By treatment of [(Mo6Br)Bra6]2? with AgNO3 in acetone and addition of KCN or KNCS the hexacyano and hexaisothiocyanato derivates [(Mo6Br)Y]2?, Ya ? CN, NCS are formed. X-ray structure determinations of (Ph4P)2 [(Mo6Br)(CN)a6]·4H2 O ( 1 ) (triclinic, spacegroup P1, a = 11.63(3), b = 11.85(1), c = 14.23(5) Å, α = 71.8(1)°, β = 67.6(3)°, γ = 62.8(1)°, Z= 1) and (n-Bu4N)2[(Mo6Br i8)(NCS)a6] · 2Et2O ( 2 ) (monoclinic, spacegroup P21/n, a = 11.483(3), b = 16.348(5), c = 20.059(6) Å, β= 95.44(3)°, Z = 2) have been performed. The via C coordinated cyano ligands of ( 1 ) reveal facial groups with (MoCN) angles of 168.0–171,5° and 174.1°–175.7°. In ( 2 ) the via N coordinated isothiocyanato groups at the apical positions show MoNC-angles of 164.4°, the equatorial angles are 172.7–173.5°. Using the molecular parameters of the X-ray determinations the 10 K IR and Raman spectra of the (n-Bu4N) cluster salts are assigned by normal coordinate analyses based on a modified valence force field. The valence force constants are fd(MoMo) = 1.41 (CNa), 1.43 (NCSa), fd (MoBri) = 0.97 (CNa), 0.96 (NCSa), fd(MoC) = 1.62, fd(Mo-N) = 2.09 mdyne/Å.  相似文献   

6.
Synthesis, Crystal Structure and Spectroscopic Properties of the Cluster Anions [(Mo6Br )X ]2? with Xa = F, Cl, Br, I The tetrabutylammonium (TBA), tetraphenylphosphonium (TPP) and tetraphenylarsonium (TPAs) salts of the octa-μ3-bromo-hexahalogeno-octahedro-hexamolybdate(2?) anions [(Mo6Br)X]2? (Xa = F, Cl, Br, I) are synthesized from solutions of the free acids H2[(Mo6Br)X] · 8 H2O with Xa = Cl, Br, I. The crystal structures show systematic stretchings in the Mo? Mo bond length and a slight compression of the Bri8 cube in the Fa to Ia series. The cations do not change much. The i.r. and Raman spectra show at 10 K almost constant frequencies of the (Mo6Bri8) cluster vibrations, whereas all modes with Xa ligand contribution are characteristically shifted. The most important bands are assigned by polarization measurements and the force constants are derived from normal coordinate analysis. The 95Mo nmr signals are shifted to lower field with increasing electronegativity of the Xa ligands. The fluorine compound shows a sharp 19F nmr singlet at ?184.5 ppm.  相似文献   

7.
Vibration spectra and force constants of the series O2PF — S2PF — S2P(CH3). The vibrational spectra of OSPF, S2PF, S2PF(CH3) and S2P(CN) are reported and discussed with O2PF and S2P(CH3). On the basis of a simplified valence-force-field the force constants are calculated and the bonding relations are discussed. In the ions, f PF is lower than in corresponding molecules. The ionic charge is distributed over nearly all atoms of the ions.  相似文献   

8.
Preparation and Spectroscopic Characterization of the Cluster Anion [(Mo6Cl )(CF3COO) ]2? On heating of [(Mo6Cl)Cl]2? in dichloromethane with trifluoroacetic acid the new stable cluster anion [(Mo6Cl)(CF3COO)]2? is formed by elimination of HCl. The (Mo6Cl) unit remains unattacked. The 19F nmr spectrum exhibits a downfield shifted singulett as compared to free CF3COO? indicating the equivalence of all trifluoroacetate ligands, which unidentate coordination is deduced from characteristic i. r. frequencies of the carboxyl groups. The most intense i.r. band at 501 cm?1 is assigned to the antisymmetric Mo? Oa vibration, the most intense Raman line at 319 cm?1 to the breathing mode of the Cl cube.  相似文献   

9.
19F NMR Spectroscopic Evidence and Calculation of the Statistical Formation of Mixed Cluster Anions [(Mo6Br Cl )F ]2?, n = 0 – 8 The complete system of the innersphere mixed clusters (Mo6BrCl)4+ is formed by exchange of innersphere bound Cli against outersphere bound Bra on tempering the solid [(Mo6Cl)Br] at 500°C for 16 h. After conversion with conc. HCl into (H3O)2[(Mo6BrCl)Cl] and precipitation of the outer Cla with AgBF4 in ethanol, treatment with tetrabutylammonium(TBA)fluoride yields (TBA)2 [(Mo6BrCl)F], a mixture of 22 different species. According to the sets of chemical equivalent fluorine atoms in total 55 19F nmr signals are expected, which are really observed in the high resolution 1D-19F-nmr spectrum. Using increments of chemical shifts, peak intensities and multiplet structures as well as the 2D-19F/19F-COSY spectrum the complete and unambiguous assignment of all resonances is achieved. From the measured integral intensities the distribution of the different compounds is determined, revealing statistical formation of the geometrical isomers.  相似文献   

10.
Vibrational Spectra and Normal Coordinate Analysis of 92Mo, 100Mo, 35Cl, and 37Cl Isotopomers of the Cluster Anions [(Mo6X )Y ]2?; Xi = Cl, Br; Ya = F, Cl, Br, I The tetrabutylammonium (TBA) salts of the octa-μ3-halogeno-hexahalogeno-octahedro-hexamolybdate(2 –) anions [(Mo6X)Y]2?; Xi = Cl, Br; Ya = F, Cl, Br, I; have been synthesized using 92Mo, 100Mo, 35Cl, and 37Cl. The 10 K IR and Raman spectra reveal significant frequency shifts due to the isotopic labelling of the Mo6 cage, the inner sphere halides X8i or the outer sphere ligands Y, respectively. The normal coordinate analysis yields (Mo? Mo) valence force constants of about 1.3 to 1.5 mdyn/Å. For the μ3-bonded halogenes Cli and Bri valence force constants of 1.1 resp. 1.0 mdyn/Å are calculated. The values for (Mo? Ya) bonds are found in the usual halide range. The observed isotopic shifts are verified very well by the calculations, allowing detailed assignment of the IR and Raman spectra of these compounds for the first time.  相似文献   

11.
High Resolution Electron Microscopy Investigations of La2CeTaO6Cl3 and its Thermal Decomposition Product La2Ce Ce TaO6Cl3?x The thermal decomposition of the hexagonal La2CeTaO6Cl3 led to a mixed-valent product La2CeCe TaO6Cl3?x with a complicated monoclinic structure. The detailed inspection shows two subunits A and B, which form the monoclinic unit cell by a ABAB sequence. The subunit A is almost identical to the hexagonal cell of the starting material while subunit B has additional Ln- and Cl-positions. For this reason, the main structure features of the monoclinic compound and the starting material are related, which is clearly seen in the electron microscopy investigations. As might be expected from the relationship between the subunits A and B one can observe defects in the monoclinic compound arising from the various possibilities of combining these building elements. We also found structure defects in the hexagonal starting material, which are caused by the presence of the subunit B.  相似文献   

12.
The crystal structure of the title compound has been determined from three dimensional x-ray data obtained by the multiple film method. The space group is P2l/n and the cell dimensions are: a = 14.90, b = 16.84, c = 8.38 Å; β = 93.5° Z = 4. The structure is formed by discrete Co (en) and Fe(CN) ions, both of which have an octahedral configuration. The Fe(CN) ions are approximately octahedrally surrounded by the Co (en) ions while arrangement of Fe (CN) ions around the Co(en) ions completely differs from an octahedron. The mean Fe? C and Co? C dustances are 1.91 and 2.01 Å, respectively. The water molecules do not play an important role in the structure and all distances between oxygen and other atoms indicate the presence of very weak hydrogen bonds. The salts M (en)3 Q(CN)6 · H2O, where M = Co and Cr and Q = Cr, Mn, Fe and Co, are all isomorphous.  相似文献   

13.
Dibromomethylsulfoniumsalts — Preparation and Crystal Structure The salts CH3SBrA? (A? = SbCl, AsF) were prepared by various routes and characterized by their Ramanspectra. CH3SBrAsF crystallized in the monoclinic space group P21/c with a = 770,5(4) pm, b = 942,4(12) pm, c = 1329,3(14) pm, β = 100,28(6)°, Z = 4. Distances and bond angles in the cation are as expected.  相似文献   

14.
On Ordered Perovskites with Cationic Vacancies. XI. Compounds of Type A B B □1/4WVIO6 ? A BIIB □W O24 with AII, BII = Ba, Sr Depending on the ionic radii of the two and three valent cations in the perovskites of type ABB □1/4WVIO6 ?; ABIIB □WO24 order disorder phenomena are present. The results of the x-ray and vibrational spectroscopic investigations as well as the diffuse reflectance spectra and the visible photoluminescence are reported.  相似文献   

15.
Thermal Behaviour and Crystal Structure of YAl3Cl12 We determined the thermodynamic data of YAl3Cl12 ΔH = ?739.9 ± 3 kcal/mol and S = 136.1 ± 4 cal/K · mol by total pressure measurements and ΔH = ?739.1 ± 1.6 kcal/mol by solution calorimetry. Using DTA-investigations we established the phase diagram in the system AlCl3–YCl3. The crystal structure was refined on the basis of single crystal data (P31 12; Z = 3; a = 1 046.8(2); c = 1 562.3(3) pm).  相似文献   

16.
K11[HSn (PW O34)2] · 27 H2O – Synthesis and Structure K11[HSn (PWO34)2] · 27 H2O 1 can be synthesized in an “one-pot reaction” from commercially obtainable educts (SnCl2; Na2HPO4 · 7 H2O, Na2WO4 · 2 H2O) in high yields and has been characterized by elemental analysis, IR/Raman-, UV/Vis-spectroscopy as well as by X-ray crystal structure analysis. The example of 1 again demonstrates the validity of our working hypothesis, that polyoxometalates can be obtained by linking highly charged, transferable building blocks by cationic centres within the scope of an optimal charge control. For structural details see “Inhaltsübersicht”.  相似文献   

17.
Crystal Structure and Properties of Calcium and Strontium Hexathiodiphosphate(IV), Ca2P2S6 and Sr2P2S6, with a Contribution on Ca5P8 and Pb2P2S6 Ca2P2S6 and Sr2P2S6 were prepared from metal and a mixture of red phosphorus and sulfur (molar ratio M:P:S = 1:1:3) in 2 corundum crucibles inserted in quartz ampullae under vacuum (20 d 900°C). The compounds were obtained as colourless, crystalline powders containing single crystals. They crystallize in the Sn2P2S6 (high temperature form) type structure (P21/c, Z = 2): Ca2P2S6 a = 653.2(2)pm, b = 728.1(2)pm, c = 1110.1(4)pm, β = 124.00(4)°, d = 2.50(2); Sr2P2S6 a = 664.3(2)pm, b = 755.7(3)pm, c = 1139.7(3)pm, β = 124.07(2)°, d = 2.97(2). The anions P2S have staggered confirmation and are arranged with the motif of a cubic close-packing. Sr2+ is coordinated by 8S which form a twofold face-capped trigonal prism and belong to 4P2S. Structure calculations clearly show that Pb2P2S6 also crystallizes in P21/c and not in Pc [1]. Also, Raman- and IR-spectra of Ca5P8 were recorded at 20°C. The stretching vibrations of P were assigned in analogy to those of P2S in alkaline earth hexathiodiphosphates(IV). The range of their frequencies (480 to 340 cm?1) is essentially smaller and shifted to smaller values compared with P2S in Ca2P2S6 and Sr2P2S6 (620 to 390 cm?1). The symmetry of P is not D3d but C2h as in the case of P2S.  相似文献   

18.
Chemistry and Structural Chemistry of Phosphides and Polyphosphides. 53. Preparation, Properties, and Vibrational Spectra of the Cage Anions P113? and As113? The Zintl-phases M3X11 (M = Na, K, Rb, Cs; X = P, As) are prepared from the elements or from M3X7 and X. The compounds undergo a first-order phase transition from the crystalline to the plastically crystalline state. Unit cell and space group of both modifications and the transition temperature Tc are determined. The vibrational spectra of the crystalline compounds and the Raman spectrum of the P113? anion in en-solution as well are measured. The assignment of the frequencies is given, based on the 32-D3 symmetry of the X113? cage anion. Normal coordinate analysis is carried out in terms of Cartesian coordinates to avoid the problem of redundancies in using internal coordinates. The force constants [mdyn Å?1] obtained for the characteristic bonds r, s, and t are: f = 1.34, f = 1.20, f = 1.08; f = 1.1, f = 0.91. Normal vibrations and the potential energy distribution (PED) are discussed.  相似文献   

19.
Preparation, 19F NMR Spectroscopic Evidence and Study of the Formation of Metal-Mixed Cluster Anions [(Mo6?nWnCl )F ]2?, n = 0?6 The complete system of metal-mixed octahedral cluster ions [(Mo6?nWnCl)F]2?, n = 0?6, is prepared by tempering Mo powder with WCl6 at 600°C. A mixture containing inclusively the geometric isomers (n = 2, 3, 4) all ten possible species is transferred into the tetra-n-butylammonium salts (TBA)2[(Mo6?nWnCl)F]. In the 19F nmr spectrum the 24 expected signals are observed, assigned on the basis of their chemical shifts, multiplicities and intensities, and confirmed by a 2D-19F-19F COSY spectrum. From the integrated intensities the distribution of the different components is derived revealing a non-statistical formation, in that isomers with Mo…?Mo or W…?W atoms in trans-positions in comparision to those with mixed Mo…?W axes are favoured, and that especially the homoleptic compounds Mo6 and W6 are present to an over-average extent. Evaluation of 19F chemical shifts reveals that F bound to W which is in antipodal position to Mo resonates at higher field compared to F bound to W in a W…?W arrangement, caused by an increased shielding, which is synonymous to a positive antipodal-effect by Mo. Vice versa F bound to Mo with an antipodal W resonates at lower field compared with F bound to Mo in an Mo…?Mo arrangement caused by an increased deshielding and synonymous a negative antipodal-effect by W. The chemical shifts, resulting from antipodal-effects, are different for the compounds within the [(Mo6?nWnCl)F]2? - system. The difference of the antipodal effect of successive substitution products results in characteristic values designated as antipodal shift constants, depending on the kind of substituents, which is valid for other cluster systems, too.  相似文献   

20.
Acyl- and Alkylidenephosphanes. XXXV. Bis[ N -(trimethylsilyl)iminobenzoyl]phosphanides of Lithium and Zinc – Syntheses as well as NMR Spectroscopic, Structural, and Quantumchemical Studies From the reaction of bis(tetrahydrofuran)lithium bis(trimethylsilyl)phosphanide with two equivalents of benzonitrile in 1,2-dimethoxyethane, the yellow dme complex ( 2 a ) of lithium bis[N-(trimethylsilyl)iminobenzoyl]phosphanide ( 2 ) was obtained in 69% yield. However, the intermediate {1-[N-lithium-N-(trimethylsilyl)amido]benzylidene}trimethylsilylphosphane ( 1 ), formed by an analogous 1 : 1 addition in diethyl ether, turned out to be unstable and as a consequence could be characterized by nmr spectroscopic methods only; attempts to isolate the compound failed, but small amounts of the neutral complex 2 b , with the ligands benzonitrile and tetrahydrofuran coordinated to lithium, precipitated. The reaction of compound 2 with zinc(II) chloride in diethyl ether gives the orange-red spiro-complex zinc bis{bis[N-(trimethylsilyl)iminobenzoyl]phosphanide} ( 3 ); this complex is also formed from bis[N-(trimethylsilyl)iminobenzoyl]phosphane ( 4 ), easily amenable by a lithium hydrogen exchange of 2 a with trifluoroacetic acid [18], and zinc bis[bis(trimethylsilyl)amide]. As derived from nmr spectroscopic studies and x-ray structure determinations, compounds 2 a {δ31P +63.3 ppm; P21/n; Z = 4; R1 = 0.067}, 2 b {δ31P +63.3 ppm; P21/c; Z = 4; R1 = 0.063}, 3 {δ31P +58.2 ppm; C2/c; Z = 4; R1 = 0.037} and 4 {δ31P +58.1 ppm [18]} exist as cyclic 3-imino-2λ3σ2-phosphapropenylamides and -propenylamine, respectively, in solution as well as in the solid state. Unlike hydrogen derivative 4 the bis[N-(trimethylsilyl)iminobenzoyl]phosphanide fragments N,N′-coordinating either a lithium or a zinc cation are characterized by almost completely equalized bond lengths; typical mean distances and angles are: PC 180.3 and 178.7; CN 130.5 and 131.8; N–Si 175.3 and 179.3; N–Li 202.3; N–Zn 203.5 pm; CPC 108.8° and 110.5°; PCN 130.9° and 132.9°; CN–Li 113.0°, CN–Zn 117.4°; N–Li–N 104.6°; N–Zn–N 108.8°. Alterations in the shape of the six membered chelate rings, caused by an exchange of the 3-imino-2λ3σ2-phosphapropenylamide or related 2λ3σ2-phospha-1,3-dionate units for the corresponding phosphorus free ligands, are discussed in detail. The results of quantumchemical DFT-B3LYP calculations coincide very well with the experimentally obtained findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号