首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We consider a variant of the constrained shortest path problem, where the constraints come from a set of forbidden paths (arc sequences) that cannot be part of any feasible solution. Two solution approaches are proposed for this variant. The first uses Aho and Corasick's keyword matching algorithm to filter paths produced by a k-shortest paths algorithm. The second generalizes Martins' deviation path approach for the k-shortest paths problem by merging the original graph with a state graph derived from Aho and Corasick's algorithm. Like Martins' approach, the second method amounts to a polynomial reduction of the shortest path problem with forbidden paths to a classic shortest path problem. Its significant advantage over the first approach is that it allows considering forbidden paths in more general shortest path problems such as the shortest path problem with resource constraints.  相似文献   

2.
Given a combinatorial optimization problem and a subset N of nonnegative integer numbers, we obtain a cardinality constrained version of this problem by permitting only those feasible solutions whose cardinalities are elements of N. In this paper we briefly touch on questions that address common grounds and differences of the complexity of a combinatorial optimization problem and its cardinality constrained version. Afterwards we focus on the polyhedral aspects of the cardinality constrained combinatorial optimization problems. Maurras (1977) [5] introduced a class of inequalities, called forbidden cardinality inequalities in this paper, that can be added to a given integer programming formulation for a combinatorial optimization problem to obtain one for the cardinality restricted versions of this problem. Since the forbidden cardinality inequalities in their original form are mostly not facet defining for the associated polyhedron, we discuss some possibilities to strengthen them, based on the experiments made in Kaibel and Stephan (2007) and Maurras and Stephan (2009) [2], [3].  相似文献   

3.
In this paper, we propose two exact algorithms for the GQAP (generalized quadratic assignment problem). In this problem, given M facilities and N locations, the facility space requirements, the location available space, the facility installation costs, the flows between facilities, and the distance costs between locations, one must assign each facility to exactly one location so that each location has sufficient space for all facilities assigned to it and the sum of the products of the facility flows by the corresponding distance costs plus the sum of the installation costs is minimized. This problem generalizes the well-known quadratic assignment problem (QAP). Both exact algorithms combine a previously proposed branch-and-bound scheme with a new Lagrangean relaxation procedure over a known RLT (Reformulation-Linearization Technique) formulation. We also apply transformational lower bounding techniques to improve the performance of the new procedure. We report detailed experimental results where 19 out of 21 instances with up to 35 facilities are solved in up to a few days of running time. Six of these instances were open.  相似文献   

4.
This paper presents a general mixed-norm minisum problem for locating a single facility in continuous space. It is assumed that several transportation modes exist between the new facility and a given set of fixed points (the customers), each mode being represented by a different ? p norm. A simple extension of Weiszfeld’s well known iterative procedure is proposed to solve the model. Convergence properties and optimality criteria are derived, and computational results are given.  相似文献   

5.
In this paper, the p-median and p-centre problems are generalized by considering the possibility that one or more of the facilities may become inactive. The unreliable p-median problem is defined by introducing the probability that a facility becomes inactive. The (p, q)-centre problem is defined when p facilities need to be located but up to q of them may become unavailable at the same time. An heuristic procedure is presented for each problem. A rigorous procedure is discussed for the (p, q)-centre problem. Computational results are presented.  相似文献   

6.
《Applied Mathematical Modelling》2014,38(15-16):3945-3957
We introduce the time constrained maximal covering salesman problem (TCMCSP) which is the generalization of the covering salesman and orienting problems. In this problem, we are given a set of vertices including a central depot, customer and facility vertices where each facility can supply the demand of some customers within its pre-determined coverage distance. Starting from the depot, the goal is to maximize the total number of covered customers by constructing a length constrained Hamiltonian cycle over a subset of facilities. We propose several mathematical programming models for the studied problem followed by a heuristic algorithm. The developed algorithm takes advantage of different procedures including swap, deletion, extraction-insertion and perturbation. Finally, an integer linear programming based improvement technique is designed to try to improve the quality of the solutions. Extensive computational experiments on a set of randomly generated instances indicate the effectiveness of the algorithm.  相似文献   

7.
This paper is concerned with the development of a parameter-free method, closely related to penalty function and multiplier methods, for solving constrained minimization problems. The method is developed via the quadratic programming model with equality constraints. The study starts with an investigation into the convergence properties of a so-called “primal-dual differential trajectory”, defined by directions given by the direction of steepest descent with respect to the variables x of the problem, and the direction of steepest ascent with respect to the Lagrangian multipliers λ, associated with the Lagrangian function. It is shown that the trajectory converges to a stationary point (x*, λ*) corresponding to the solution of the equality constrained problem. Subsequently numerical procedures are proposed by means of which practical trajectories may be computed and the convergence of these trajectories are analyzed. A computational algorithm is presented and its application is illustrated by means of simple but representative examples. The extension of the method to inequality constrained problems is discussed and a non-rigorous argument, based on the Kuhn—Tucker necessary conditions for a constrained minimum, is put forward on which a practical procedure for determining the solution is based. The application of the method to inequality constrained problems is illustrated by its application to a couple of simple problems.  相似文献   

8.
This paper presents a general modelling framework for restricted facility location problems with arbitrarily shaped forbidden regions or barriers, where regions are modelled using phi-objects. Phi-objects are an efficient tool in mathematical modelling of 2D and 3D geometric optimization problems, and are widely used in cutting and packing problems and covering problems. The paper shows that the proposed modelling framework can be applied to both median and centre facility location problems, either with barriers or forbidden regions. The resulting models are either mixed-integer linear or non-linear programming formulations, depending on the shape of the restricted region and the considered distance measure. Using the new framework, all instances from the existing literature for this class of problems are solved to optimality. The paper also introduces and optimally solves a realistic multi-facility problem instance derived from an archipelago vulnerable to earthquakes. This problem instance is significantly more complex than any other instance described in the literature.  相似文献   

9.
We analyze the location of p facilities satisfying continuous area demand. Three objectives are considered: (i) the p-center objective (to minimize the maximum distance between all points in the area and their closest facility), (ii) equalizing the load service by the facilities, and (iii) the minimum equitable radius – minimizing the maximum radius from each point to its closest facility subject to the constraint that each facility services the same load. The paper offers three contributions: (i) a new problem – the minimum equitable radius is presented and solved by an efficient algorithm, (ii) an improved and efficient algorithm is developed for the solution of the p-center problem, and (iii) an improved algorithm for the equitable load problem is developed. Extensive computational experiments demonstrated the superiority of the new solution algorithms.  相似文献   

10.
The single row facility layout problem (SRFLP) is the problem of arranging n departments with given lengths on a straight line so as to minimize the total weighted distance between all department pairs. We present a polyhedral study of the triplet formulation of the SRFLP introduced by Amaral [A.R.S. Amaral, A new lower bound for the single row facility layout problem, Discrete Applied Mathematics 157 (1) (2009) 183-190]. For any number of departments n, we prove that the dimension of the triplet polytope is n(n−1)(n−2)/3 (this is also true for the projections of this polytope presented by Amaral). We then prove that several valid inequalities presented by Amaral for this polytope are facet-defining. These results provide theoretical support for the fact that the linear program solved over these valid inequalities gives the optimal solution for all instances studied by Amaral.  相似文献   

11.
In this paper we propose a new model for the p-median problem. In the standard p-median problem it is assumed that each demand point is served by the closest facility. In many situations (for example, when demand points are communities of customers and each customer makes his own selection of the facility) demand is divided among the facilities. Each customer selects a facility which is not necessarily the closest one. In the gravity p-median problem it is assumed that customers divide their patronage among the facilities with the probability that a customer patronizes a facility being proportional to the attractiveness of that facility and to a decreasing utility function of the distance to the facility.  相似文献   

12.
In this work, the problem of a company or chain (the leader) that considers the reaction of a competitor chain (the follower) is studied. In particular, the leader wants to set up a single new facility in a planar market where similar facilities of the follower, and possibly of its own chain, are already present. The follower will react by locating another single facility after the leader locates its own facility. Both the location and the quality (representing design, quality of products, prices, etc.) of the new leader’s facility have to be found. The aim is to maximize the profit obtained by the leader considering the future follower’s entry. The demand is supposed to be concentrated at n demand points. Each demand point splits its buying power among the facilities proportionally to the attraction it feels for them. The attraction of a demand point for a facility depends on both the location and the quality of the facility. Usually, the demand is considered in the literature to be fixed or constant regardless the conditions of the market. In this paper, the demand varies depending on the attraction for the facilities. Taking variable demand into consideration makes the model more realistic. However, it increases the complexity of the problem and, therefore, the computational effort needed to solve it. Three heuristic methods are proposed to cope with this hard-to-solve global optimization problem, namely, a grid search procedure, a multistart algorithm and a two-level evolutionary algorithm. The computational studies show that the evolutionary algorithm is both the most robust algorithm and the one that provides the best results.  相似文献   

13.
The Multi-Commodity k-splittable Maximum Flow Problem consists in routing as much flow as possible through a capacitated network such that each commodity uses at most k paths and the capacities are satisfied. The problem appears in telecommunications, specifically when considering Multi-Protocol Label Switching. The problem has previously been solved to optimality through branch-and-price. In this paper we propose two exact solution methods both based on an alternative decomposition. The two methods differ in their branching strategy. The first method, which branches on forbidden edge sequences, shows some performance difficulty due to large search trees. The second method, which branches on forbidden and forced edge sequences, demonstrates much better performance. The latter also outperforms a leading exact solution method from the literature. Furthermore, a heuristic algorithm is presented. The heuristic is fast and yields good solution values.  相似文献   

14.
A general framework for modeling median type locational decisions, where (i) travel costs and demands may be stochastic, (ii) multiple services or commodities need to be considered, and/or (iii) multiple median type objectives might exist, is presented—using the concept of “multidimensional networks”. The classical m-median problem, the stochastic m-median problem, the multicommodity m-median problem and and multiobjective m-median problem are defined within this framework.By an appropriate transformation of variables, the multidimensional m-median problem simplifies to the classical m-median problem but with a K-fold increase in the number of nodes, where K is the number of dimensions of the network. A nested dual approach to solve the resulting classical m-median problem, that uses Erlenkotter's facility location scheme as a subroutine, is presented. Computational results indicate that the procedure may perhaps be the best available one to solve the m-median problem exactly.  相似文献   

15.
The facility layout problem is concerned with finding the most efficient arrangement of a given number of departments with unequal area requirements within a facility. The facility layout problem is a hard problem, and therefore, exact solution methods are only feasible for small or greatly restricted problems. In this paper, we propose a spring-embedding approach that unlike previous approaches results in a model that is convex. Numerical results demonstrating the potential of our model and the efficiency of our solution procedure are presented.  相似文献   

16.
This research presents a new constrained optimization approach for solving systems of nonlinear equations. Particular advantages are realized when all of the equations are convex. For example, a global algorithm for finding the zero of a convex real-valued function of one variable is developed. If the algorithm terminates finitely, then either the algorithm has computed a zero or determined that none exists; if an infinite sequence is generated, either that sequence converges to a zero or again no zero exists. For solving n-dimensional convex equations, the constrained optimization algorithm has the capability of determining that the system of equations has no solution. Global convergence of the algorithm is established under weaker conditions than previously known and, in this case, the algorithm reduces to Newton’s method together with a constrained line search at each iteration. It is also shown how this approach has led to a new algorithm for solving the linear complementarity problem.  相似文献   

17.
The problem of locating new facilities with respect to existing facilities is stated as a linear programming problem where inter-facility distances are assumed to be rectangular. The criterion of location is the minimization of the maximum weighted rectangular distance in the system. Linear constraints which (a) limit the new facility locations and (b) enforce upper bounds on the distances between new and existing facilities and between new facilities can be included. The dual programming problem is formulated in order to provide for an efficient solution procedure. It is shown that the duLal variables provide information abouLt the complete range of new facility locations which satisfy the minimax criterion.  相似文献   

18.
The paper formulates an extended model of Weber problem in which the customers are represented by convex demand regions. The objective is to generate a site in R 2 that minimizes the sum of weighted Euclidean distances between the new facility and the farthest points of demand regions. This location problem is decomposed into a polynomial number of subproblems: constrained Weber problems (CWPs). A projection contraction method is suggested to solve these CWPs. An algorithm and the complexity analysis are presented. Three techniques of bound test, greedy choice and choice of starting point are adopted to reduce the computational time. The restricted case of the facility is also considered. Preliminary computational results are reported, which shows that with the above three techniques adopted the algorithm is efficient.The authors were supported by the dissertation fund of Nari-Relays Corporation.  相似文献   

19.
Probabilistic Formulation of the Emergency Service Location Problem   总被引:1,自引:0,他引:1  
The problem of locating emergency service facilities is studied under the assumption that the locations of incidents (accidents, fires, or customers) are random variables. The probability distribution for rectilinear travel time between a new facility location and the random location of the incident P i is developed for the case of P i being uniformly distributed over a rectangular region. The location problem is considered in a discrete space. A deterministic formulation is obtained and recognized to be a set cover problem. Probabilistic variation of the central facility location problem is also presented.An example and some computational experience are provided to emphasize the impact of the probabilistic formulation on the location decision.  相似文献   

20.
In the present paper we continue the work begun by Sauer, Perles, Shelah and Anstee on forbidden configurations of 0–1 matrices. We give asymptotically exact bounds for all possible 2 × l forbidden submatrices and almost all 3 × l ones. These bounds are improvements of the general bounds, or else new constructions show that the general bound is best possible. It is interesting to note that up to the present state of our knowledge every forbidden configuration results in polynomial asymptotic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号