首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Supramolecular aspects on Te(OH)6 as substitute for crystal‐water in adenine hydrate complexes and the first disodium ditellurate(VI) are reported. The co‐crystallate [Te(OH)6 · 2 adenine · 4 H2O] ( 1 ) has been prepared in 41% yield from the 1 : 1 mixing of Te(OH)6 with the nitrogenous base adenine. The adduct of infinite stacks of adenine molecules, Te(OH)6 and water not only proves that Te(OH)6 mimicks the role of water in the related hydrate adenine · 3 H2O but also shows that the inclusion of Te(OH)6 raises the number of HO–H and N–HO contacts and therefore increases the distance between the adenine rings to 3.31 Å in 1 in comparison to that in adenine trihydrate (3.22 Å). Additionally, the disodium ditellurate(VI) aggregate {[Te2(O)2(OH)6(ONa)2]2 [NaOH · 12.5 H2O]} ( 2 ) resulted from the reaction of 1 with 2 molar equivalents of aqueous NaOH. Dinuclear 2 represents the first X‐ray diffraction characterized example of a sodium tellurate(VI) constructed from [Te2O4(OH)6]2– dianions.  相似文献   

2.
The first sodium uranyl chromate, Na4[(UO2)(CrO4)3], has been obtained by high‐temperature solid‐state reaction. The structure (triclinic, P1¯, Z = 2, a = 7.1548(3), b = 8.4420(3), c = 11.5102(5)Å, α = 80.203(1)°, β = 79.310(1)°, γ = 70.415(1)° V = 639.24(4)Å3 ) has been solved by direct methods and refined on the basis of F2 for all unique reflections to R1 = 0.024 [calculated on the basis of 4374 unique observed reflections (‖Fo‖ 4σF)]. The structure is based on chains of composition [(UO2)(CrO4)3] that are parallel to [1¯01]. The chains contain UrO5 pentagonal bipyramids (Ur = Uranyl) that share all equatorial corners with CrO4 tetrahedra. Cr(1)O4 and Cr(3)O4 tetrahedra bridge between two adjacent UrO5 bipyramids, whereas Cr(2)O4 tetrahedra share one corner with one UrO5 bipyramid each. The [(UO2)(CrO4)3] chains are planar and oriented parallel to (313). The Na+ cations provide linkage of the chains in the structure.  相似文献   

3.
Diiodobis(diphenyltelluride)mercury(II), [(Ph2Te)2HgI2], is formed during the reaction of [(PhTe)2Hg] with HgI2 in refluxing THF. The same product can be obtained from a pressure reaction between PhTeI3 and elemental mercury. The mercury atom is co‐ordinated in a distorted tetrahedral environment with I‐Hg‐I angles of 117?. Long range I···Te contacts of about 3.8 Å link the [(Ph2Te)2HgI2] units to infinite chains along the b axis of the unit cell.  相似文献   

4.
5.
The reaction of Mes2TeF2 (Mes = 2,4,6‐trimethylphenyl) with trimethylsilyl cyanide yields the corresponding tellurium(IV) dicyanide Mes2Te(CN)2. Isolation of suitable crystals allows the determination of the first crystal structure of a compound of the type R2Te(CN)2.  相似文献   

6.
The synthesis of the following mixed ligand organotellurium(IV) compounds C8H8Te(S2CNEt2)[(SPPh2)2N] · H2O ( 1 ), C8H8Te(S2CNC5H10)[(SPPh2)2N] ( 2 ), C8H8Te(S2CNC4H8O)[(SPPh2)2N] ( 3 ) and C8H8Te(S2CNC4H8S)[(SPPh2)2N] ( 4 ) was achieved. They were characterized by IR, 1H, 13C, 31P and 125Te NMR, mass spectroscopy, and elemental analyses. The X‐ray crystal structures of 1 , 2 and 4 were determined. The both types of ligands display an asymmetrical chelating coordination mode on interaction with the tellurium atom. When these aniso‐bonded donor atoms are included in the coordination sphere, the tellurium atom exhibit an effective co‐ordination number of seven. The arrangement may be described as 1 : 2 : 2 : 2 coordination with a presumably stereoactive lone‐pair of electrons.  相似文献   

7.
By reaction of elemental tellurium, tellurium(IV) chloride, tantalum(V) chloride and tantalum(V) oxychloride in the ionic liquid [BMIM]Cl ([BMIM]Cl:1‐Butyl‐3‐methylimidazolium chloride),[Te8]2[Ta4O4Cl16] is obtained in the form of lucent black crystals. The title compound consists of infinite [Te–Te–(Te6)]n2+ chains (Te–Te: 264.9(1)–284.3(1) pm) and isolated [Ta4O4Cl16]4– anions. The [Te–Te–(Te6)]n2+ chains are interconnected to form a two‐dimensional tellurium network (Te–Te: 335.9 pm). Due to this interaction the [Te–Te–(Te6)]n2+ chains in [Te8]2[Ta4O4Cl16] show an arrangement that differs significantly from known polycationic [Te8]n2+ chains. The two‐dimensional tellurium network is finally separated by tetrameric, corner‐sharing oxidochloridotantalate anions [(TaO2/2Cl4/1)4]4– that are firstly observed. The composition of [Te8]2[Ta4O4Cl16] is confirmed by EDX analysis; its optical band gap is estimated to 1.1–1.2 eV via UV/Vis spectroscopy.  相似文献   

8.
Abstract

The title compound was synthesized by electrochemical oxidation of (η5-C5Me5)2Fe2S4 and its X-ray crystal structure was determined. A μ2-S2 ligand is converted to μ22-s2 ligand by the oxidation.  相似文献   

9.
Synthetic Cs(VO2)3(TeO3)2 is built up from infinite sheets of distorted octahedral VVO6 groups, sharing vertices. These octahedral layers are “capped” by Te atoms (as parts of pyramidal [TeIVO3]2– groups) on both faces of each V/O sheet, with inter‐layer, 12‐coordinate, Cs+ cations providing charge compensation. Cs(VO2)3(TeO3)2 is isostructural with M(VO2)3(SeO3)2 (M = NH4, K). Crystal data: Cs(VO2)3(TeO3)2, Mr = 732.93, hexagonal, space group P63 (No. 173), a = 7.2351(9) Å, c = 11.584(2) Å, V = 525.1(2) Å3, Z = 2, R(F) = 0.030, wR(F 2) = 0.063.  相似文献   

10.
杂多化合物在催化、医药、材料及光化学等方面具有广泛的应用前景 [1~ 4 ] ,其中钼磷多金属氧酸盐具有优异的氧化催化性能 [5,6 ] .近年来合成的新奇结构的钼磷多金属氧酸盐中已测定结构的有含帽[7,8] 和非帽[9~ 12 ] 系列 .本文利用水热法合成了未见文献报道的结构新颖的夹心型磷钼多金属氧酸盐[( CH3CH2 ) 4N]4 H3O{Na[( HMo2 O5) 3( HPO4 ) ( H2 PO4 ) 3]2 }· ( H2 PO4 ) 2 · 1 0 H2 O,并测定了其晶体结构 .1 实验与晶体结构分析1 .1 仪器与试剂 元素 Na用美国原子吸收分光光度计测定 ;C,H和 N用 Perkin- Elmer 2 4 0…  相似文献   

11.
Two new mixed alkaline uranyl molybdates CsNa3[(UO2)4O4Mo2O8] ( 1 ) and Cs2Na8[(UO2)8O8(Mo5O20)] ( 2 ) have been obtained by high‐temperature solid state reactions. Their crystal structures have been solved by direct methods: Compound 1 : triclinic, P , a = 6.46(1), b = 6.90(1), c = 11.381(2) Å, α = 84.3(1), β = 91.91(1), γ = 80.23(1)°, V = 488.6(2) Å3, R1 = 0.06 for 2865 unique reflections with |Fo| ≥ 4σF; Compound 2 : orthorhombic, Ibam, a = 6.8460(2), b = 23.3855(7), c = 12.3373(3) Å, V = 1975.2(1) Å3, R1 = 0.049 for 2120 unique reflections with |Fo| ≥ 4σF. The structure of 1 contains complex sheets of UrO5 pentagonal bipyramids and molybdenum polyhedra. The sheets have [(UO2)2O2(MoO5)] composition. Natrium and cesium atoms are located in the interlayer space. Cesium atoms are situated between the molybdenum clusters, whereas natrium atoms are segregated between the uranyl complexes. The large Cs+ ions are localized between the Mo2O9 groups and force the molybdenum polyhedra to rotate relative to the [(UO2)2O2(MoO5)] sheets. Such rotation is impossible for U6+ polyhedra due to their rigid edge‐sharing complexes. The distance between the U6+ polyhedra vertices of neighboring layers is 3.8 Å, that allows the Na+ ion to be positioned between the uranyl groups. The crystal structure of 2 is based upon a framework consisting of [(UO2)2O2(MoO5)] sheets parallel to (010). The sheets are linked into a 3‐D framework by sharing vertices with the Mo(2)O4 tetrahedra, located between the sheets. Each MoO4 tetrahedron shares two of its corners with two MoO6 octahedra in the sheet above, and the other two with MoO6 octahedra of the sheet below. Thus four MoO6 octahedra and one MoO4 tetrahedron form chains of composition Mo5O18. The resulting framework has a system of channels occupied by the Cs+ and Na+ ions.  相似文献   

12.
以2[(η5-C5Me5)WS3(CuBr)3]2和diphenyl-2-pyridylphosphine (PPyPh2)在乙腈中反应得到标题化合物[(η5-C5Me5)WS3Cu3Br2(PPyPh2)2], 对该产物进行了元素分析、 IR、 UV-Vis和1H NMR 谱表征, 并测定了晶体结构. 该化合物晶体属三斜晶系, P1空间群, 晶胞参数: a=1.545 9(7) nm, b=1.62 0(1) nm, c=1.018 0(2) nm, α=94.18(3)°, β=97.38(3)°, γ=111.81(4)°, V=2.327(2) nm3, Z=2, Dc=1.84 g*cm-3, F(000)=1 260, μ=57.77 cm-1, 最终偏离因子R=0.029. 此簇合物结构可视为由一个[(η5-C5Me5)WS3]单元和3个Cu组成的开口立方烷, 其中2个Cu是畸变四面体配位, 第3个Cu是近似三角平面配位. W-Cu(1), W-Cu(2) 和W-Cu(3)距离分别为0.270 41(9), 0.273 27(8), 0.267 85(9) nm.  相似文献   

13.
新型杂多配合物K3H2[GeW8Mo3VO40]·4H2O的合成与晶体结构   总被引:1,自引:0,他引:1  
用分步酸化、分步加料法合成出新型杂多配合物K3H2[GeW8Mo3VO40]·4H2O,并用X射线单晶衍射法测定其晶体结构,该晶体属单斜晶系,C2空间群,a=1.894 4(4)nm,b=3.292 0(7)nm,c=1.249 4(2)nm,β=90.25(3)°,V=7.792(4)nm3,Z=6.最终偏差因子R=0.063.RW=0.067.  相似文献   

14.
[Co(H2O)2Cl2(H2SeO3)2] (monoclinic, P21/c, Z = 2, a = 519.82(5), b = 1462.6(1), c = 643.09(7) pm, β = 92.51(1)°, Rall = 0.0583) was obtained from CoCl2 and H2SeO3 as purple plate–shaped single crystals. In the compound, the Co2+ ions are octahedrally coordinated by two Cl? ions, two H2O molecules, and two monodentate H2SeO3 molecules, leading to neutral complexes [Co(H2O)2Cl2(H2SeO3)2]. They are connected by hydrogen bonds involving both chlorine and oxygen atoms as acceptor atoms.  相似文献   

15.
The title compound was synthesized and its crystal structure was determined by single-crystal X-ray diffraction.The crystal is of orthorhombic system(C21H18ClNO4,Mr = 383.81),space group Pca21 with a = 13.913(3),b = 10.273(2),c = 26.488(5),V = 3786.1(13) 3,Z = 8,Dc = 1.347 g/cm3,F(000) = 1600,μ = 0.228 mm-1,the final R = 0.0550 and wR = 0.1278 for 5065 observed reflections(I > 2σ(I)).The title compound in a racemic form was found to exist as a mixture of two enantiomers in an equal ratio in the unit cell.The intermolecular hydrogen bonds link the molecules in a head-to-end manner to generate an infinite chain.  相似文献   

16.
Air‐sensitive black crystals of the new compound [Mn(en)3]Te4 were synthesized by reacting MnCl2 · 4 H2O, K2Te3 and elemental Te in 1,2‐ethanediamine (en) under solvothermal conditions at 433 K. The compound crystallizes in the monoclinic space group P21/n with lattice parameters a = 839.51(7) pm, b = 1551.3(1) pm, c = 1432.6(1) pm, and β = 90.28(2)°. Isolated [Mn(en)3]2+ cations and Te42– anions are arranged in an alternating fashion parallel to the crystallographic b‐axis. One terminal Te atom of the Te42– anions exhibits a short intermolecular contact to a neighboured anion thus forming Te84– anions. A slightly longer interionic Te…Te separation is observed between two of the inner Te atoms of neighboured Te84– anions. Taking these longer separations into account infinite Te‐chains are formed running parallel to [001]. The intermolecular Te…Te interactions affect the Te–Te bond lengths within the Te42– anion leading to a lengthening of the average Te–Te distance. Short N–H…Te distances indicate hydrogen bonding between the cations and anions. DTA‐TG measurements show that at 441 K the material decomposes in one step. The resulting crystalline material consists of MnTe2 and Te.  相似文献   

17.
The reaction of a-H3[PWi2O40]with Y(NO3)3 in the presence of DMF or DMSO leads to two complexes complex 1 consists of discrete [YLn]3 cations and α-Keggin heteropolyanions [PW12O40]3-, whereas, in complex 2,donor-acceptor interaction results in a cation-anion-cation triplet. In addition, the electrochemical behavior of the two complexes indicates the usual successive reduction processes of the W atoms in the anions.  相似文献   

18.
[Me3SnVO3] and [(Me2Sn)4V2O9], two Organotin Vanadates with Novel 3D Network Structures Two new organotin vanadates [Me3SnVO3] ( 1 ) and [(Me2Sn)4V2O9] ( 2 ) have been prepared by the reaction of NH4VO3 with Me3SnBr and Me2SnBr2 resp. in agar gel. The structures of 1 and 2 have been determined by x‐ray crystallography at 220 K. 1 crystallizes monoclinic in the space group P21/c with a = 1335.6(2), b = 1144.4(2), c = 1118.8(2) pm, β = 113.54(2)°. 2 crystallizes orthorhombic in the space group Pnnm with a = 1257.6(2), b = 1345.4(2), c = 1323.1(1) pm. 1 consists of infinite metavanadate chains which are linked by Me3Sn+ cations. 2 exhibits a complex 3D‐ network structure with VO4 tetrahedra, Me2SnO3 trigonal bipyramides and Me2SnO4 octahedra linked by common oxygen atoms.  相似文献   

19.
为探讨钼多酸根阴离子在有机化学反应中的催化机理,用菲醌作底物合成了[(n-C_4H_9)_4N]_2[(OC_(14)H_8O)_2Mo_4O(10)(OCH_3)_2]配合物。X射线单晶结构分析表明,该晶体属单斜晶系,空间群P2_1/c,a=1.3149(5)nm,b=1.8666(8)nm,c=1.8903(3)nm,β=104.06(3)°,Z=2.收集到独立衍射点3505个,其中1382个为可观测点,最终一致性因子R=0.078.结构分析结果表明,菲醌与钼多酸根在不同的实验条件下,能形成配比、氧化态以及结构不同的配合物。  相似文献   

20.
多金属氧酸盐因其独特的结构而具有较高的抗肿瘤及抗病毒活性,蛋白质和肽是氨基酸的聚合体,氨基酸侧链官能团能与多金属氧酸盐形成新型配合物.了解氨基酸和肽与多金属氧酸盐的相互作用对于深入研究多金属氧酸盐抗肿瘤及抗病毒机理很有意义.我们曾报道了赖氨酸、丙氨酸及甘氨酸二肽与钼磷酸所形成化合物的晶体结构.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号