首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The catalytic oxidation of iron(II) with oxygen occurs along with an autocatalytic reaction between palladium(II) tetraaqua complex and iron(II) aqua complex in an oxygen atmosphere. The reaction is catalyzed by a compound of palladium in an intermediate oxidation state, presumably by a small palladium cluster formed in the course of the reduction of palladium(II) tetraaqua complex with iron(II) aqua complex.  相似文献   

2.
Addition of bromotrichloromethane and tetrachloromethane to alkenes in the presence of palladium(II) complexes begins with single-electron transfer from the palladium atom to polyhalomethane molecule, followed by fragmentation of the radical anion thus formed and generation of trichloromethyl radical. Halogen transfer to a carbon-centered radical arising from addition of trichloromethyl radical at the double bond occurs both from the polyhalomethane molecule and from halide palladium complex.  相似文献   

3.
The reaction of 1,3,4,6-tetrakis(isopropylthio)thieno[3,4-c]thiophene ( 1 ) with the palladium complex Pd2(dba)3CHCl3 (dba = dibenzylideneacetone) and tetracyanoethylene (TCNE) gave a new palladium complex in which two isopropylthio groups of 1 and the double bond of TCNE were trigonally coordinated to palladium. The X-ray analysis revealed the electron donation from palladium to TCNE, leading to a lengthening of the C?C double bond in TCNE and distortion of TCNE from planarity. The radical cation of 1 and the radical anion of TCNE were detected by ESR spectroscopy in methylene dichloride solution of the complex, although the radical content was estimated from the paramagnetic susceptibility to be less than 1%. The reaction of the complex with aniline gave the same product as that in the reaction of the radical cation of 1 with aniline.  相似文献   

4.
From a methyl ligand, CO, and an imine a chelating amide ligand is formed by insertion of the C=N bond into the metal–acyl bond in cationic palladium(II ) complexes (see reaction below). The cationic acylpalladium complexes are obtained from CO and readily accessible palladium starting materials. LL=diphosphane ligand.  相似文献   

5.
The mechanism of the direct insertion of molecular oxygen into a palladium hydride bond has been elucidated using quantum mechanics (B3LYP/LACVP** with the PBF continuum solvent model). The key step is found to be the abstraction of the hydrogen atom resulting in the formation of a PdI/HO2 (triplet) radical pair, which then proceeds to form a singlet palladium hydroperoxo species. Potential palladium(0) pathways were explored and were found to be inaccessible. The results are in agreement with recent experimental results and are consistent with our previously predicted mechanism for an analogue system.  相似文献   

6.
The oxidative interception of various σ‐alkyl palladium(II) intermediates with additional reagents for the difunctionalization of alkenes is an important research area. A new palladium‐catalyzed oxidative difunctionalization reaction of alkenes with α‐carbonyl alkyl bromides is described, in which the σ‐alkyl palladium(II) intermediate is generated through a Heck insertion and trapped using an aryl C(sp2)? H bond. This method can be applied to various α‐carbonyl alkyl bromides, including primary, secondary, and tertiary α‐bromoalkyl esters, ketones, and amides.  相似文献   

7.
The reaction of piperdin-2-ones with a 2-bromobenzyl substituent in the 5-position in the presence of a palladium catalyst leads to biaryl compounds. Their formation can be explained via initial C-H insertion of the aryl palladium species into the allylic C-H bond of the piperidinone. This eventually leads to a metallacycle containing Pd(II) that inserts another aryl bromide, promoting the formation of the biaryl bond.  相似文献   

8.
New reaction conditions for intramolecular palladium(II)-catalyzed oxidative carbon-carbon bond formation under air are described. The use of pivalic acid as the reaction solvent, instead of acetic acid, results in greater reproducibility, higher yields, and broader scope. This includes the use of electron-rich diarylamines as illustrated in the synthesis of three naturally occurring carbazole products: Murrayafoline A, Mukonine, and Clausenine. A variety of side products have also been isolated, casting light on competing reaction pathways and revealing new reactivity with palladium(II) catalysis.  相似文献   

9.
Palladium pincer complex-catalyzed reaction of functionalized propargyl chloride (and mesylate) derivatives with hexamethylditin gives allenyl- and propargyl-stannane products. This catalytic activity is in sharp contrast with the reactivity of commonly used palladium(0) catalysts inducing addition of hexamethylditin to the triple bond. The product distribution of the pincer complex-catalyzed reaction is controlled by the substituent effects of the propargylic substrate: electron-withdrawing functionalities give mainly allenyl stannane products, while with electron-donating groups the main product is propargyl stannane. The catalytic reaction proceeds under very mild conditions tolerating many functionalities such as OH, OAc, NR3, and NR2Ac groups. Our mechanistic studies indicate that the key intermediate of the reaction is a monotrimethylstannane palladium pincer complex. A remarkable feature of the studied catalytic process is that the palladium catalyst does not undergo redox reactions, but its oxidation state is restricted to palladium(II). Since palladium(0) intermediates does not occur in this process, the catalyst is very stable and highly chemoselective.  相似文献   

10.
Xa He  H‐Yan Lu  Guo‐Sheng Liu 《中国化学》2001,19(12):1285-1288
In the presence of CuCl2, N‐(2′, 4′‐dienyl)‐2‐alkynamides can be converted to α‐alkylidene‐σ‐butyrolactams under the catalysis of palladium(II). In this reaction, CuCl2 is used to oxidize Pd(0) to regenerate Pd(II), or the carbon‐palladium bond is quenched by the oxidative cleavage reaction of CuCl2.  相似文献   

11.
The radical tributyltin hydride reduction of 1,1,1,4-tetrachlorobut-2-ene yields a mixture of the expected 1,1,4-trichlorobut-2-ene and 1,1,4-trichlorobut-1-ene resulting from preferential abstraction of a chlorine atom from the trichloromethyl group. The palladium-catalyzed reduction follows an entirely different course, giving 1,1-dichlorobutadiene exclusively and quantitatively. The palladium-catalyzed reaction involves an oxidative addition-β-elimination process leading to dichlorobutadiene and a dichloropalladium(II) species. Tributyltin hydride reduction of palladium(II) to palladium(O) completes the catalytic cycle.  相似文献   

12.
Conjugated dienes can be diaminated at the internal and/or terminal double bonds using Cu(I) as catalyst and N,N-di-t-butyldiaziridinone (1) as nitrogen source. The regioselectivity is highly dependent upon the choice of Cu(I) catalyst and the substituents on diene substrates. The diamination likely proceeds via two mechanistically distinct pathways. The N-N bond of N,N-di-t-butyldiaziridinone (1) is first homolytically cleaved by the Cu(I) catalyst to form four-membered Cu(III) species A and Cu(II) radical species B, which are in rapid equilibrium. The internal diamination likely proceeds in a concerted manner via Cu(III) species A, and the terminal diamination likely involves Cu(II) radical species B. Kinetic studies have shown that the diamination is first-order in N,N-di-t-butyldiaziridinone (1), zero-order in olefin, and first-order in total Cu(I) catalyst, and the cleavage of the N-N bond of 1 by the Cu(I) catalyst is the rate-determining step. The internal diamination is favored by use of CuBr without ligand and electron-rich dienes. The terminal diamination is favored when using CuCl-L and dienes with radical-stabilizing groups.  相似文献   

13.
The reaction mechanism for the formation of the hydroxylating intermediate in aromatic amino acid hydroxylases (i.e., phenylalanine hydroxylase, tyrosine hydroxylase, tryptophan hydroxylase) was investigated by means of hybrid density functional theory. These enzymes use molecular oxygen to hydroxylate both the tetrahydrobiopterin cofactor and the aromatic amino acid. A mechanism is proposed in which dioxygen forms a bridging bond between the cofactor and iron. The product is an iron(II)-peroxy-pterin intermediate, and iron was found to be essential for the catalysis of this step. No stable intermediates involving a pterin radical cation and a superoxide ion O(2)(-) were found on the reaction pathway. Heterolysis of the O-O bond in the iron(II)-peroxy-pterin intermediate is promoted by one of the water molecules coordinated to iron and releases hydroxypterin and the high-valent iron oxo species Fe(IV)=O, which can carry out subsequent hydroxylation of aromatic rings. In the proposed mechanism, the formation of the bridging C-O bond is rate-limiting in the formation of Fe(IV)=O.  相似文献   

14.
Pd(OAc)(2):pyridine (1:4) is an efficient catalyst system for the oxidation of alcohols with molecular oxygen. A mechanistic study of this reaction reveals that pyridine promotes the aerobic oxidation of palladium(0) but inhibits the oxidation of alcohol by palladium(II). Kinetic results reveal that turnover-limiting substrate oxidation consists of (i) formation of a palladium(II)-alkoxide, (ii) pyridine dissociation, and (iii) beta-hydride elimination. These results provide a framework for the design and/or screening of more effective aerobic oxidation catalysts.  相似文献   

15.
Oxidative Heck coupling of thiazole-4-carboxylates via palladium(II)-catalyzed C-H bond activation has been achieved in moderate to good yields. No ligand, and no acidic additive were used in the reaction. The results showed that this protocol tolerated a series of substitutions on the thiazole ring. A preliminary attempt of direct arylation with p-xylene via Pd(II)-catalyzed C-H bond activation has also been done.  相似文献   

16.
The mechanism of styrene carbonylation in the presence of a palladium(II) complex has been investigated by quantum chemical methods. The migratory insertion of styrene into the palladium-hydrogen bond of hydride π-complexes is considered in detail. This process determines the regioselectivity of the reaction.  相似文献   

17.
As shown by singular value decomposition and global analysis of the absorption spectra, oxidation of nitrosylmyoglobin, MbFe(II)NO, by oxygen occurs in two consecutive (pseudo) first-order reactions in aqueous air- saturated solutions at physiological conditions (pH 7.0, I=0.16 m (NaCl)). Both reaction steps have a large temperature dependence with the following activation parameters: DeltaS++(1) = 121+/-7 and DeltaS++(1) = 23+/-29; and DeltaS++(2) = 88+/-14 kJ mol(-1) and DeltaS++(2)-63+/-51 J(-1) K(-1) mol(-1) at 25 degrees C for the first and second step, respectively. At physiological temperature, the initial reaction is faster, while at lower temperatures, the first reaction is slower and rate-determining. The rate of the first reaction is linearly dependent on oxygen pressure at lower pressures, while for oxygen pressures above atmospheric, the rate exhibits saturation behaviour. The second reaction is independent of oxygen pressure. The rate of the second reaction increases when oxymyoglobin is added. In contrast, the rate of the first reaction is independent of the presence of oxymyoglobin. The observed kinetics are in agreement with a reaction mechanism in which the nitric oxide that is initially bound to the Fe(II) centre of myoglobin is displaced by oxygen in a reversible ligand-exchange reaction prior to an irreversible electron transfer. The ligand-exchange process is dissociative in nature and depends bond breaking, and nitric oxide is suggested to be trapped in a protein cavity. The absorption spectrum of the intermediate, as resolved from the global analysis, is in agreement with a peroxynitrite complex, and the initial process must involve partial electron transfer.  相似文献   

18.
A series of model theoretical calculations are described that suggest a new mechanism for the oxidation step in enzymatic cytochrome P450 hydroxylation of saturated hydrocarbons. A new class of metastable metal hydroperoxides is described that involves the rearrangement of the ground-state metal hydroperoxide to its inverted isomeric form with a hydroxyl radical hydrogen bonded to the metal oxide (MO-OH --> MO....HO). The activation energy for this somersault motion of the FeO-OH group is 20.3 kcal/mol for the P450 model porphyrin iron(III) hydroperoxide [Por(SH)Fe(III)-OOH(-)] to produce the isomeric ferryl oxygen hydrogen bonded to an *OH radical [Por(SH)Fe(III)-O....HO(-)]. This isomeric metastable hydroperoxide, the proposed primary oxidant in the P450 hydroxylation reaction, is calculated to be 17.8 kcal/mol higher in energy than the ground-state iron(III) hydroperoxide Cpd 0. The first step of the proposed mechanism for isobutane oxidation is abstraction of a hydrogen atom from the C-H bond of isobutane by the hydrogen-bonded hydroxyl radical to produce a water molecule strongly hydrogen bonded to anionic Cpd II. The hydroxylation step involves a concerted but nonsynchronous transfer of a hydrogen atom from this newly formed, bound, water molecule to the ferryl oxygen with a concomitant rebound of the incipient *OH radical to the carbon radical of isobutane to produce the C-O bond of the final product, tert-butyl alcohol. The TS for the oxygen rebound step is 2 kcal/mol lower in energy than the hydrogen abstraction TS (DeltaE() = 19.5 kcal/mol). The overall proposed new mechanism is consistent with a lot of the ancillary experimental data for this enzymatic hydroxylation reaction.  相似文献   

19.
在p-硝基氯苯(1)与α-氰基乙酰乙酯-α-碳负离子(2)的反应过程中, 测得了反应中间体p-硝基氯苯负离子自由基(3)的ESR谱。用ESR场/频联锁技术测定了(3)的ESR吸收强度-时间曲线, 当[1]《[2]时, 其结果与连续一级反应动力学相吻合。测得了从2向1的电子转移和3的分解反应速率常数和活化参数, 反应产物为α-氰基-α-(p-硝基苯基)乙酸乙酯和微量的硝基苯。为该反应提出了非链式的电子转移-负离子自由基分解-自由基偶合机理。  相似文献   

20.
A novel Pd-catalysed oxidative coupling between benzoic acids and vinylarenes or acrylates to furnish isocoumarins and phthalides is reported. The reaction proceeds smoothly in molten tetrabutylammonium acetate via a selective C−H bond activation, with very low percentage of ligand-free palladium acetate as the catalyst, under atmospheric pressure of oxygen. Sub-stoichiometric amount of copper acetate is also required as a reoxidant for the palladium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号