首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A new approach for simultaneous planar measurement of droplet velocity and size with gas phase velocities is reported, which combines the out-of-focus imaging technique ‘Interferometric Laser Imaging Droplet Sizing’ (ILIDS) for planar simultaneous droplet size and velocity measurements with the in-focus technique ‘Particle Image Velocimetry’ (PIV) for gas velocity measurements in the vicinity of individual droplets. Discrimination between the gas phase seeding and the droplets is achieved in the PIV images by removing the glare points of focused droplet images, using the droplet position obtained through ILIDS processing. Combination of the two optical arrangements can result in a discrepancy in the location of the centre of a droplet, when imaging through ILIDS and PIV techniques, of up to about 1 mm, which may lead to erroneous identification of the glare points from droplets on the PIV images. The magnitude of the discrepancy is a function of position of the droplet’s image on the CCD array and the degree of defocus, but almost independent of droplet size. Specifically, it varies approximately linearly across the image along the direction corresponding to the direction of propagation of the laser sheet for a given defocus setting in ILIDS. The experimental finding is supported by a theoretical analysis, which was based on geometrical optics for a simple optical configuration that replicates the essential features of the optical system. The discrepancy in the location was measured using a monodisperse droplet generator, and this was subtracted from the droplet centres identified in the ILIDS images of a polydisperse spray without ‘seeding’ particles. This reduced the discrepancy between PIV and ILIDS droplet centres from about 1 mm to about 0.1 mm and hence increased the probability of finding the corresponding fringe patterns on the ILIDS image and glare points on the PIV image. In conclusion, it is shown that the proposed combined method can discriminate between droplets and ‘seeding’ particles and is capable of two-phase measurements in polydisperse sprays.  相似文献   

4.
A new mathematical analysis of the dynamics of evaporating sprays in the vicinity of a vortex flow field is presented. The governing equations for a polydisperse spray evaporating in an unsteady viscous vortex flow are formulated using the sectional approach. First, new similarity solutions are found for the dynamics of the spray in a mono-sectional framework. It is shown that similarity for the droplets’ drag term exists, and an explicit model for the drag is found using perturbation theory. Numerical simulations are conducted to validate the main assumptions of the analytic approach adopted in this study. An extension of the mono-sectional solution of the spray equations to a polydisperse spray solution is then derived and the dynamics of polydisperse spray in an Oseen type vortex are presented. It is shown that for a given radial location, the droplets in each section reach a maximal radial velocity due to the effect of vorticity. A simple model is derived for the prediction of this maximal radial velocity of the droplets using perturbation theory, which agrees very well with the full similarity solution. The present study shows that spray dynamics is highly affected by the droplets’ size, but also by the spray initial size distribution, even when the same Sauter mean diameter is considered. This may have far reaching implications, especially in spray combustion applications.  相似文献   

5.
The dispersion characteristics of a selection of non-evaporating non-reacting, evaporating non-reacting, and reacting dilute spray jets issuing in ambient air (Gounder et al, Combust Sci Technol 182:702–715, 2010; Masri and Gounder, Combust Flame 159:3372–3397, 2010) and in a hot coflow (Oloughlin and Masri, Flow Turbul Combust 89:13–35, 2012) are analysed. Other than the cases found in those contributions, two additional sprays of kerosene have been investigated in order to systematically study the effects of evaporation. The burners are well designed such that boundary conditions may be accurately measured for use in numerical simulations. The dynamics and dispersion characteristics are analysed by conditioning results on the droplet Stokes numbers and by systematically investigating changes in dispersion and dynamics as a function of carrier air velocity, liquid loading, ignition method, and location within the flame or spray jet. The tendency for droplet dispersion defined by the ratio of radial rms velocity to axial mean velocity varies significantly between reacting and non-reacting flows. However, dispersion is found to be largely unaffected by evaporation. The total particle concentration, or number density of droplets within the spray has also been used as a direct measure of spray dispersion with the effect of evaporation on a turbulent polydisperse spray being isolated by investigating acetone and kerosene sprays with similar boundary conditions. The rate of change of droplet size with radial position is almost identical for the kerosene and acetone cases. The dispersion characteristics, closely related to the ‘fan spreading’ phenomenon are dependant on the carrier air velocity and axial location within the spray.  相似文献   

6.
The objective of the present work is to provide, through the association of optical diagnostics on a well-chosen experimental configuration, new insights into the coupling of a vortical gaseous flow with a polydisperse evaporating spray representative of practical injections. A cloud of droplets is injected in an inert laminar round jet, axisymmetric and pulsated, enabling the study of the interaction of strong-vorticity structures with a polydisperse spray. The experiment is a laboratory-scale representation of realistic injection configurations such as in engine combustion chambers or industrial burners. The chosen set-up leads to a well-controlled configuration and allows the coupling of two optical diagnostics, particle imaging velocimetry (PIV) and interferometric particle imaging (IPI), which leads to the study of both the flow dynamic and the droplet size distribution. The behaviour of droplets is analysed regarding their relaxing and evaporating properties. Size-conditioned preferential concentration of both weakly evaporating and strongly evaporating sprays is investigated. Droplet trajectories are also analysed by means of high-rate tomographic visualizations. The time history between their ejection from the nozzle and their interaction with the vortex is strongly related to the droplet preferential concentration and the observed heterogeneous repartition in the gas flow.  相似文献   

7.
8.
A stochastic model is proposed for modelling the turbulent dispersion of liquid fuel sprays. The approach adopted is based on the evolution equation for the joint probability density function (PDF) of the droplet properties. Turbulent dispersion is described by Langevin's equation in which a Weiner process is used to represent the stochastic force term. The method leads to plausible results when applied to a kerosene spray flame and provides a rational framework for the incorporation of liquid film break up and droplet formation processes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Measurements of droplet size in optically-thick, non-evaporating, shear-driven sprays have been made using ultra-small angle x-ray scattering (USAXS). The sprays are produced by orifice-type nozzles coupled to diesel injectors, with measurements conducted from 1 – 24 mm from the orifice, spanning from the optically-dense near-nozzle region to more dilute regions where optical diagnostics are feasible. The influence of nozzle diameter, liquid injection pressure, and ambient density were examined. The USAXS measurements reveal few if any nanoscale droplets, in conflict with a popular computational model of diesel spray breakup. The average droplet diameter rapidly decreases with downstream distance from the nozzle until a plateau value is reached, after which only small changes are seen in droplet diameter. This plateau droplet size is consistent with the droplets being small enough to be stable with respect to further breakup. Liquid injection pressure and nozzle diameter have the biggest impact on droplet size, while ambient density has a smaller effect.  相似文献   

10.
Information of droplet size and size distribution lays the basis for investigations of atomization mechanisms and performance optimization.However,the laser diffraction and phase Doppler particle analyzers have difficulty in accurately characterizing sprays with a wide range of droplet sizes and very large droplets,especially if a large number of droplets are aspherical.A method to measure size in such largedroplet sprays based on digital imaging with backward illumination was developed,including an image acquisition system and image process programs.Calibration of the measurement system was performed using a dot calibration target with different dot sizes.An experimental setup was designed and established to characterize spray nozzles under different operation loads,as well as different nozzle arrangements.Results show that the droplet size of sprays ranges from dozens of microns to several millimeters.The superiority of wide load range for such nozzles was indicated by the size-measurement results under half-load to full-load operations.The present study revealed that the image processing technique can be effectively implemented for in-line size measurements of sprays with a wide distribution of droplet size and aspherical droplets,which would be difficult to characterize by other methods.  相似文献   

11.
Information of droplet size and size distribution lays the basis for investigations of atomization mechanisms and performance optimization. However, the laser diffraction and phase Doppler particle analyzers have difficulty in accurately characterizing sprays with a wide range of droplet sizes and very large droplets, especially if a large number of droplets are aspherical. A method to measure size in such large-droplet sprays based on digital imaging with backward illumination was developed, including an image acquisition system and image process programs. Calibration of the measurement system was performed using a dot calibration target with different dot sizes. An experimental setup was designed and established to characterize spray nozzles under different operation loads, as well as different nozzle arrangements. Results show that the droplet size of sprays ranges from dozens of microns to several millimeters. The superiority of wide load range for such nozzles was indicated by the size-measurement results under half-load to full-load operations. The present study revealed that the image processing technique can be effectively implemented for in-line size measurements of sprays with a wide distribution of droplet size and aspherical droplets, which would be difficult to characterize by other methods.  相似文献   

12.
13.
In this paper, we focused on modeling the collision phenomenon between two liquid droplets for application in spray simulations. It has been known that the existing O’Rourke collision model widely used in CFD codes is inaccurate in determining collision outcomes and droplet behavior. In addition, since the collision probability of the model follows a statistical approach involving computational cell geometry, the prediction results should be strongly dependent on the cell size. As a result, to more accurately calculate droplet collisions, the technique for predicting the droplet velocity and its direction after collision must be extended for use in spray modeling. Further, it is also necessary to consider all the possible collision outcomes, such as bouncing, stretching separation, reflexive separation and coalescence. Therefore, this paper describes the appropriateness of a composite concept for modeling collision outcomes and the implementation of deterministic collision algorithms into a multidimensional CFD code for the calculation of post-collisional droplet movements. Furthermore, the existing model does not consider the formation of satellite droplets. For this reason, our present modeling concept includes a fragmenting droplet collision model. Using the present model, we have validated the collision interactions between liquid droplets under high Weber number conditions by comparing our calculations with experimental results from a binary droplet collision. This paper also deals with the application of the model to inter-impingement sprays by analyzing the atomization characteristics, such as mean droplet size and velocity, spray tip penetrations and spray-shapes of the impinging spray using the suggested collision algorithms and then comparing the results with available experimental data.  相似文献   

14.
Experiments were conducted to characterize the interaction between two sprays of electrically charged ethanol droplets. The micrometer-size droplet sprays were generated electrohydrodynamically by applying a high positive voltage to two adjacent parallel needles that were located above a distant, electrically grounded funnel. The resultant droplet axial and lateral velocity components and diameter were measured as a function of needle spacing and applied voltage using a Phase Doppler Particle Analyzer. Data were acquired at two axial positions below the needles' tips, for two needle spacings, four applied voltages and at a single flow rate.The results revealed that an increase in applied voltage yielded an increase in the spray charge density. This produced an increase in both the axial and lateral droplet velocity components and a decrease in the droplet Sauter mean diameter and in its variation across the spray. An increase in needle spacing yielded a decrease in the axial velocity component. The lateral velocity component and the Sauter mean diameter, however, were not noticeably affected by this increase. Photographic data established a relationship between the lateral half-width of the spray and axial distance. This was used to identify a nondimensional similarity between the axial mean velocity component and lateral position. The results collectively support that appropriate variations in the applied voltage and needle spacing can yield more spatially uniform mean velocity component and Sauter mean diameter profiles. These variations bring about increased mixing between the two needles' sprays and, thus, an enhanced development of the combined droplet spray.  相似文献   

15.
We introduce a Eulerian/Lagrangian model to compute the evolution of a spray of water droplets inside a complex geometry. To take into account the complex geometry we define a rectangular mesh and we relate each mesh node to a node function which depends on the location of the node. The time-dependent incompressible and turbulent Navier-Stokes equations are solved using a projection method. The droplets are regarded as individual entities and we use a Lagrangian approach to compute the evolution of the spray. We establish the exchange laws related to mass and heat transfer for a droplet by introducing a mass transfer coefficient and a heat transfer coefficient. The numerical results from our model are compared with those from the literature in the case of a falling droplet in the atmosphere and from experimental investigation in a wind tunnel in the case of a polydisperse spray. The comparison is fairly good. We present the computation of a water droplet spray inside a complex and realistic geometry and determine the characteristics of the spray in the vicinity of obstacles.  相似文献   

16.
17.
The aim of this experimental work was to demonstrate the ability of three-color laser-induced fluorescence (3cLIF) thermometry to study the thermal mixing of two non-isothermal water sprays. Combined 3cLIF-phase Doppler analyzer measurements were also implemented to derive correlations between droplet size and temperature. Both sprays had different characteristics in terms of flow rate and droplet size distribution. The liquid spray was successively pre-heated, and the other spray was maintained and injected at ambient temperature. The thermal mixing will be discussed in light of a wide set of experimental results obtained under various experimental conditions, including different liquid flow rates, droplet size distributions and droplet concentrations. To analyze the potential effect of droplet coalescence on the mean local liquid temperature, both sprays were alternatively seeded with fluorescent dye. Main results show that significant heating of cold spray is possible when the hot spray is injected with the higher flow rate. Moreover, this heating affects only the smallest droplets.  相似文献   

18.
The present paper deals with a new optical diagnostic that aims to perform droplet temperature measurements based on the two-color laser-induced fluorescence (2cLIF). The 2cLIF requires a single tracer, and the fluorescence intensity is collected on two spectral bands. The ratio of both intensities measured in the case of single monodisperse droplets depends in principle only on the temperature. However, the application in the case of polydispere sprays failed. Indeed, a dependence of the droplet size correlated to the depth of field of the optics, used for fluorescence collection, induces a bias in the ratio value. This work analyses these coupled effects by using combined LIF and Phase Doppler Analyser measurements. This device allows achieving fluorescence ratio measurements per droplet size class. The study is conducted with two different sprays in terms of particles size and density. The use of a third spectral band of detection (3cLIF) and a long distance microscope leads to correct the size effect and reduce the depth of field effect, respectively. These investigations are then demonstrated by measuring temperatures in an overheated water spray.  相似文献   

19.
This paper analyzes the transient characteristics of intermittent sprays produced by the single-point impact of multiple cylindrical jets. The aim is to perform a transient analysis of the intermittent atomization process to study the effect of varying the number of impinging jets in the hydrodynamic mechanisms of droplet formation. The results evidence that hydrodynamic mechanisms underlying the physics of ligament fragmentation in 2-impinging jets sprays also apply to sprays produced with more than 2 jets during the main period of injection. Ligaments detaching from the liquid sheet, as well as from its bounding rim, have been identified and associated with distinct droplet clusters, which become more evident as the number of impinging jets increases. Droplets produced by detached ligaments constitute the main spray, and their axial velocity becomes more uniformly distributed with 4-impinging jets because of a delayed ligament fragmentation. Multijet spray dispersion patterns are geometric depending on the number of impinging jets. Finally, an analysis on the Weber number of droplets suggests that multijet sprays are more likely to deposit on interposed surfaces, thus becoming a promising and competitive atomization solution for improving spray cooling.  相似文献   

20.
An experimental setup has been created to allow measurements of the properties of the gas phase, the liquid phase and the mixture in a pressure-atomised spray of water, in terms of both mean quantities and Reynolds stresses. This setup involves laser Doppler velocimetry for determining the velocity of either the gas or liquid phase, according to the parameters used, such as seeding or no-seeding of the ambient air, laser source power, or photo-multiplier gains, droplet tracking velocimetry for determining the velocity and characteristic size of the droplets, and a single optical probe for determining the mean volume fraction of the liquid, from which the liquid mean mass fraction and the mean density of the mixture are inferred. The experimental conditions, in particular in terms of liquid and gas Weber numbers, were chosen in a range for which the liquid phase turbulent kinetic energy should be mainly responsible for the liquid-jet primary break-up, these flow conditions lying within the second wind-induced atomization regime. Results reported herein are more specifically focused on the region ranging from 400 nozzle diameters to 800 nozzle diameters, where the liquid core is disrupted. They provide new information about the formation and properties of such pressure-atomised sprays, in particular in terms of the role played by the Reynolds stresses resulting from the slip velocity between the liquid and the gas. The mean slip velocity is directly related to the turbulent flux of liquid. Such information will be used in the future to develop new turbulence models since very limited experimental information is so far available for these terms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号