首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Flow patterns, void fraction and friction pressure drop measurements were made for an adiabatic, vertical up-and-down, two-phase flow of air–water mixtures across a horizontal in-line, 5×20 tube bundle with a pitch-to-diameter ratio of 1.28. The flow patterns in the cross-flow zones were obtained and flow pattern maps were constructed. The data of average void fraction were less than the values predicted by a homogenous flow model and showed a strong mass velocity effect, but were well-correlated in terms of the Martinelli parameter Xtt and liquid-only Froude number FrLO. The two-phase friction multiplier data could be well-correlated with the Martinelli parameter.  相似文献   

2.
An optical measurement method for two-phase flow pattern characterization in microtubes has been utilized to determine the frequency of bubbles generated in a microevaporator, the coalescence rates of these bubbles and their length distribution as well as their mean velocity. The tests were run in a 0.5 mm glass channel using saturated R-134a at 30 °C (7.7 bar). The optical technique uses two laser diodes and photodiodes to measure these parameters and to also identify the flow regimes and their transitions. Four flow patterns (bubbly flow, slug flow, semi-annular flow and annular flow) with their transitions were detected and observed also by high speed video. It was also possible to characterize bubble coalescence rates, which were observed here to be an important phenomena controlling the flow pattern transition in microchannels. Two types of coalescence occurred depending on the presence of small bubbles or not. The two-phase flow pattern transitions observed did not compare well to a leading macroscale flow map for refrigerants nor to a microscale map for air–water flows. Time averaged cross-sectional void fractions were also calculated indirectly from the mean two-phase vapor velocities and compared reasonably well to homogeneous values.  相似文献   

3.
An example of high-velocity open channel flows is a supercritical flow past an abrupt drop. In such a geometry, the basic air–water flow properties were measured, including distributions of void fraction and bubble count rate, and local air and water chord size distributions, at and downstream of the backward-facing step. The bubble count rate distributions were compared with a conceptual model of streamwise distribution of air and water chords which yields a quasi-parabolic relationship between bubble count rate and void fraction. The proposed model was an attempt to explain the experimental relationship between bubble count rate and void fraction, rather a meticulous breakdown of the complex air–water structure.  相似文献   

4.
Despite the importance of air–oil slug flows to many industrial applications, their available data reported in the literature are limited compared to air–water slug flows. The main objective of the present study is to explain how air–oil slug flow parameters can be experimentally investigated using hot-film anemometry, capacitance sensors and image processing. Experiments were performed using air–oil slug flow through a horizontal pipe for air superficial velocities ranged from 0.01 m/s to 0.65 m/s and oil superficial velocities ranged from 0.03 m/s to 2.3 m/s. The signal obtained from the hot-film anemometer was used to determine the time-averaged local void fraction and liquid velocity and turbulence intensity for air–oil slug flow. The capacitance signals along with the data obtained by image processing of the flow were used to determine the elongated bubble length and velocity. The measurements techniques used found to describe in detail the internal structure of the slug flow. Finally, the experimental results were compared to existing models and correlations.  相似文献   

5.
For the last three decades, the research into skimming flows down stepped chutes was driven by needs for better design guidelines. The skimming flow is characterised by some momentum transfer from the main stream to the recirculation zones in the shear layer developing downstream of each step edge. In the present study some physical modelling was conducted in a relatively large facility and detailed air–water flow measurements were conducted at several locations along a triangular cavity. The data implied some self-similarity of the main flow properties in the upper flow region, at step edges as well as at all locations along the step cavity. In the developing shear layer and cavity region (i.e. y/h < 0.3), the air–water flow properties presented some specific features highlighting the development of the mixing layer downstream of the step edge and the strong interactions between cavity recirculation and mainstream skimming flows. Both void fraction and bubble count rate data showed a local maximum in the developing shear layer, although the local maximum void fraction was always located below the local maximum bubble count rate. The velocity profiles had the same shape as the classical mono-phase flow data. The air–water flow properties highlighted some intense turbulence in the mixing layer that would be associated with large shear stresses and bubble–turbulence interactions.  相似文献   

6.
A new experimental programme is conducted in order to relate the characteristics of two-phase flow around a rigid cylinder with the resulting lift forces. The local characteristics of air–water flow measured in the vicinity of the cylinder provide a useful source of information about the effects of flow on the excitation mechanisms. In particular, a selection of relevant parameters has been identified which, with the help of a standard dimensional analysis, may explain the energetic contents of buffeting forces. Among the parameters effective in reducing the data are the flow regime, bubble frequency and gravity forces. In addition, in the range of bubbly regimes, the magnitude of the random forces is found to be related to the local fluctuations of void fraction. Finally, a new formulation is proposed to collapse the dimensionless spectra of the buffeting lift forces in a single characteristic curve. This analysis shows a marked improvement over the collapse of data in comparison with previous normalized models.  相似文献   

7.
An analytical formulation for the pressure recovery of two-phase flow across a sudden expansion was developed. The formulation takes into account the change in void fraction across the expansion, the pressure difference between the upstream flow and the downstream face of the expansion and the additional wall shear stress in the developing region downstream of the expansion. Experiments were performed using air–oil two-phase flow to evaluate the relative contribution of the different terms to the pressure recovery for three area ratios of 0.0625, 0.25 and 0.444. The current formulation, which takes into account all the relevant terms, was found to improve the prediction of the pressure recovery over existing models.  相似文献   

8.
Instantaneous readouts of an electrical resistivity probe are taken in an upward vertical air–water mixture. The signals are further processed to render the statistical moments and the probability density functions here used as objective flow pattern indicators. A series of 73 experimental runs have its flow pattern identified by visual inspection assisted by the analyses of the void fraction’s trace and associated probability density function. The flow patterns are classified into six groups and labeled as: bubbly, spherical cap, slug, unstable slug, semi-annular and annular. This work compares and analyzes the performance of artificial neural networks, ANN, and expert systems to flow pattern identification. The employed ANNs are Multiple Layer Perceptrons, Radial Basis Functions and Probabilistic Neural Network, with single and multiple outputs. The performance is gauged by the percentage of right identifications based on experimental observation. The analysis is extended to clustering algorithms to assist the formation of knowledge base employed during the learning stages of the ANNs and expert systems. The performance of the following clustering algorithms: self organized maps, K-means and Fuzzy C-means are also tested against experimental data.  相似文献   

9.
Multiphase flows are very common in industry, oftentimes involving very harsh environments and fluids. Accordingly, there is a need to determine the dispersed phase holdup using noninvasive fast responding techniques; besides, knowledge of the flow structure is essential for the assessment of the transport processes involved. The ultrasonic technique fulfills these requirements and could have the capability to provide the information required. In this paper, the potential of the ultrasonic technique for application to two-phase flows was investigated by checking acoustic attenuation data against experimental data on the void fraction and flow topology of vertical, upward, air–water bubbly flows in the zero to 15% void fraction range. The ultrasonic apparatus consisted of one emitter/receiver transducer and three other receivers at different positions along the pipe circumference; simultaneous high-speed motion pictures of the flow patterns were made at 250 and 1000 fps. The attenuation data for all sensors exhibited a systematic interrelated behavior with void fraction, thereby testifying to the capability of the ultrasonic technique to measure the dispersed phase holdup. From the motion pictures, basic gas phase structures and different flows patterns were identified that corroborated several features of the acoustic attenuation data. Finally, the acoustic wave transit time was also investigated as a function of void fraction.  相似文献   

10.
This paper presents a new method for identifying two-phase flow regimes from the instantaneous local fluid phase signals using continuous hidden Markov model (CHMM). CHMM is known to be a very strong pattern identifier. Air–water two-phase flows were realized in a transparent vertical tube. The tube length was 2 m, and its inner diameter was 19 mm. The instantaneous local fluid phase signals were collected using a single step index multimode optical fiber probe located at the center and mid-length of the tube. Signal features required in CHMM implementation were extracted using an innovative method. Various aspects of hidden Markov modeling and their effects on the results were studied. The flow pattern results are in very good agreement with photographs of the flow captured during the experiments. In sum, the results show that hidden Markov model has a good potential in identifying two-phase flow patterns.  相似文献   

11.
Flow patterns, void fraction and friction pressure drop measurements were made for an adiabatic, vertical up-and-down, two-phase flow of air–water mixtures across a horizontal in-line, 5×20 tube bundle with a pitch-to-diameter ratio of 1.28. The flow patterns in the cross-flow zones were obtained and flow pattern maps were constructed. The data of average void fraction were less than the values predicted by a homogenous flow model and showed a strong mass velocity effect, but were well-correlated in terms of the Martinelli parameter Xtt and liquid-only Froude number FrLO. The two-phase friction multiplier data could be well-correlated with the Martinelli parameter.  相似文献   

12.
Flow patterns, the pressure drag reduction and the heat transfer in a vertical upward air–water flow with the surfactant having negligible environmental impact were studied experimentally in a tube of 2.5 cm in diameter. Visual observations showed that gas bubbles in the air–water solution with surfactant are smaller in size but much larger in number than in pure air–water mixture, at the all flow regimes. The transition lines in the flow regime map for the solution of air–water mixture with surfactant of the 300 ppm concentration are mainly consistent with the experimental data obtained in clear air–water mixture. An additive of surfactant to two-phase flow reduces the total pressure drop and decrease heat transfer, especially in the churn flow regime.  相似文献   

13.
A general heat transfer correlation for non-boiling gas–liquid flow with different flow patterns in horizontal pipes is proposed. In order to overcome the effect of flow pattern on heat transfer, a flow pattern factor (effective wetted-perimeter) is developed and introduced into our proposed correlation. To verify the correlation, local heat transfer coefficients and flow parameters were measured for air–water flow in a pipe in the horizontal position with different flow patterns. The test section was a 27.9 mm ID stainless steel pipe with a length to diameter ratio of 100. A total of 114 data points were taken by carefully coordinating the liquid and gas superficial Reynolds number combinations. The heat transfer data were measured under a uniform wall heat flux boundary condition ranging from about 3000 W/m2 to 10,600 W/m2. The superficial Reynolds numbers ranged from about 820 to 26,000 for water and from about 560 to 48,000 for air. These experimental data including different flow patterns were successfully correlated by the proposed general two-phase heat transfer correlation with an overall mean deviation of 5.5%, a standard deviation of 11.7%, and a deviation range of −18.3% to 37.0%. Ninety three percent (93%) of the data were predicted within ±20% deviation.  相似文献   

14.
The two-phase flow in the corrugated gap created by two adjacent plates of a plate heat exchanger was investigated experimentally. One setup consisting of a transparent corrugated gap was used to visualize the two-phase flow pattern and study the local phenomena of phase distribution, pressure drop and void fraction. Saturated two-phase R365mfc and an air-water mixture were used as working fluids.In a second experimental setup, the heat transfer coefficients and the pressure drop inside an industrial plate heat exchanger during the condensation process of R134a are determined. Both experimental setups use the same type of plates, so the experimental results can be connected and a flow pattern model for the condensation in plate heat exchangers can be derived. In this work the results of the flow pattern visualization, the two-phase pressure drop in the corrugated gap and the void fraction analysis by measurement of the electrical capacity are presented. A new pressure drop correlation is derived, which takes into account different flow patterns, that appear during condensation. The mean deviation of the presented pressure drop model compared to the experimental data and data from other experimental works is 18.9%. 81.7% of the calculated pressure drop lies within ±30% compared to the experimental data.  相似文献   

15.
A hydraulic jump is the rapid transition from a supercritical to subcritical free-surface flow. It is characterised by strong turbulence and air bubble entrainment. New air–water flow properties were measured in hydraulic jumps with partially developed inflow conditions. The data set together with the earlier data of Chanson (Air bubble entrainment in hydraulic jumps. Similitude and scale effects, 119 p, 2006) yielded similar experiments conducted with identical inflow Froude numbers Fr 1 = 5 and 8.5, but Reynolds numbers between 24,000 and 98,000. The comparative results showed some drastic scale effects in the smaller hydraulic jumps in terms of void fraction, bubble count rate and bubble chord time distributions. The present comparative analysis demonstrated quantitatively that dynamic similarity of two-phase flows in hydraulic jumps cannot be achieved with a Froude similitude. In experimental facilities with Reynolds numbers up to 105, some viscous scale effects were observed in terms of the rate of entrained air and air–water interfacial area.  相似文献   

16.
The liquid turbulence structure of air–water bubbly flow in a 200 mm diameter vertical pipe was experimentally investigated. A dual optical probe was used to measure the bubble characteristics, while the liquid turbulence was measured using hot-film anemometry. Experiments were performed at two liquid superficial velocities of 0.2 and 0.68 m/s for gas superficial velocities in the range of 0–0.18 m/s, corresponding to an area averaged void fraction up to 13.6%. In general, there is an increase in the liquid turbulence energy when the bubbles are introduced into the liquid flow. The increase in the energy mainly occurs over a range of length scales that are on the order of the bubble diameter. A suppression of the turbulence was observed close to the wall at very low void fraction flows. Initially, the suppression occurs in the low wave number range and then extends to higher wave numbers as the suppression is increased.  相似文献   

17.
18.
The transition from supercritical to subcritical open channel flow is characterised by a strong dissipative mechanism called a hydraulic jump. A hydraulic jump is turbulent and associated with the development of large-scale turbulence and air entrainment. In the present study, some new physical experiments were conducted to characterise the bubbly flow region of hydraulic jumps with relatively small Froude numbers (2.4 < Fr1 < 5.1) and relatively large Reynolds numbers (6.6 × 104 < Re < 1.3 × 105). The shape of the time-averaged free-surface profiles was well defined and the longitudinal profiles were in agreement with visual observations. The turbulent free-surface fluctuation profiles exhibited a peak of maximum intensity in the first half of the hydraulic jump roller, and the fluctuations exhibited some characteristic frequencies typically below 3 Hz. The air–water flow properties showed two characteristic regions: the shear layer region in the lower part of the flow and an upper free-surface region above. The air–water shear layer region was characterised by local maxima in terms of void fraction and bubble count rate. Other air–water flow characteristics were documented including the distributions of interfacial velocity and turbulence intensity. The probability distribution functions (PDF) of bubble chord time showed that the bubble chord times exhibited a broad spectrum, with a majority of bubble chord times between 0.5 and 2 ms. An analysis of the longitudinal air–water structure highlighted a significant proportion of bubbles travelling within a cluster structure.  相似文献   

19.
We present an analysis of the geometry of the continuous and disperse phases in the bubble and slug flow regimes in air–water mixtures generated in a capillary T-junction of 1  mm internal diameter. Bubble size dispersion is very low in the considered flow patterns. The concept of unit cell is used to identify two characteristic lengths of the two-phase flow, namely, the unit cell length and the bubble length. The relationship between these lengths and the gas and liquid superficial velocities, gas mean velocity, bubble generation frequency and volume average void fraction is analysed. We conclude that in the considered configuration the unit cell and bubble lengths can be predicted either by the ratio of the gas–liquid superficial velocities or the volume average void fraction.  相似文献   

20.
This study investigates flow patterns and bubble dynamics of two-phase flow around two 100 μm diameter circular pillars in tandem, which were entrenched inside a horizontal micro channel. Bubble velocity, trajectory, size, and void fraction were measured using a high speed camera and analyzed using a particle tracking velocimetry method. A range of gas and liquid superficial velocities were tested, resulting in different bubbly flow patterns, which were consistent with previous studies. These flow patterns were altered as they interacted with the pillars. Depending on the relative transverse location of bubbles to the pillars, and through bubble–bubble interaction, the flow sometimes returned to its original state. It was also determined that the pillars altered both the bubble trajectory and void fraction, especially in the pillars region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号