首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 553 毫秒
1.
相比传统的弹簧法等方法,基于球松弛算法的动网格松弛法在复杂边界大变形条件下可以得到质量更高的边界网格以及更大的极限变形量,但该方法在时间效率上还有提升的空间.引入二重网格,采用动网格松弛法进行稀疏网格的网格变形,将边界位移传递到整个网格计算域;再利用二重网格映射,将稀疏网格位移映射到原有计算网格的节点上.算例表明,改进...  相似文献   

2.
Cover Image     
A hybrid computational method coupling the lattice-Boltzmann (LB) method and a Langevin-dynamics (LD) method is developed to simulate nanoscale particle and polymer (NPP) suspensions in the presence of both thermal fluctuation and long-range many-body hydrodynamic interactions (HIs). Brownian motion of the NPP is explicitly captured by a stochastic forcing term in the LD method. The LD method is two-way coupled to the nonfluctuating LB fluid through a discrete LB forcing source distribution to capture the long-range HI. To ensure intrinsically linear scalability with respect to the number of particles, a Eulerian-host algorithm for short-distance particle neighbor search and interaction is developed and embedded to LB-LD framework. The validity and accuracy of the LB-LD approach are demonstrated through several sample problems. The simulation results show good agreements with theory and experiment. The LB-LD approach can be favorably incorporated into complex multiscale computational frameworks for efficiently simulating multiscale multicomponent particulate suspension systems such as complex blood suspensions.  相似文献   

3.
Many problems of interest are characterized by 2 distinctive and disparate scales and a huge multiplicity of similar small‐scale elements. The corresponding scale‐dependent solvability manifests itself in the high gradient flow around each element needing a fine mesh locally and the similar flow patterns among all elements globally. In a block spectral approach making use of the scale‐dependent solvability, the global domain is decomposed into a large number of similar small blocks. The mesh‐pointwise block spectra will establish the block‐block variation, for which only a small set of blocks need to be solved with a fine mesh resolution. The solution can then be very efficiently obtained by coupling the local fine mesh solution and the global coarse mesh solution through a block spectral mapping. Previously, the block spectral method has only been developed for steady flows. The present work extends the methodology to unsteady flows of short temporal and spatial scales (eg, those due to self‐excited unsteady vortices and turbulence disturbances). A source term–based approach is adopted to facilitate a two‐way coupling in terms of time‐averaged flow solutions. The global coarse base mesh solution provides an appropriate environment and boundary condition to the local fine mesh blocks, while the local fine mesh solution provides the source terms (propagated through the block spectral mapping) to the global coarse mesh domain. The computational method will be presented with several numerical examples and sensitivity studies. The results consistently demonstrate the validity and potential of the proposed approach.  相似文献   

4.
The adaptive mesh refinement (AMR) method is developed for three-dimensional turbulent complex flows in clean rooms using the finite volume method with a collocated grid arrangement. Clean rooms have many interesting and complex flow characteristics especially the secondary flows and the recirculation regions. The accurate numerical solution of the flows is important for the efficient design of clean rooms. The use of the conventional uniform grid requires such a high computational time and data storage capacity that they make computational fluid dynamics (CFD) less attractive for the design optimization. The AMR method is, therefore, applied by using the fine grid only in the required regions and using the coarse grid in the other regions. The velocity is chosen as the main parameter for the grid refinement because it is the most influential parameter in clean rooms. The results show that the present AMR method can reduce the computational time by eight times and the data storage requirement is only 37% of that using the conventional method, while the same order of accuracy can be maintained. The present AMR method is, therefore, proved to be a promising technique for solving three-dimensional turbulent complex flows in clean rooms.  相似文献   

5.
We present a novel approach to hybrid Reynolds-averaged Navier-Stokes (RANS)/ large eddy simulation (LES) wall modeling based on function enrichment, which overcomes the common problem of the RANS-LES transition and enables coarse meshes near the boundary. While the concept of function enrichment as an efficient discretization technique for turbulent boundary layers has been proposed in an earlier article by Krank & Wall (A new approach to wall modeling in LES of incompressible flow via function enrichment. J Comput Phys. 2016;316:94-116), the contribution of this work is a rigorous derivation of a new multiscale turbulence modeling approach and a corresponding discontinuous Galerkin discretization scheme. In the near-wall area, the Navier-Stokes equations are explicitly solved for an LES and a RANS component in one single equation. This is done by providing the Galerkin method with an independent set of shape functions for each of these two methods; the standard high-order polynomial basis resolves turbulent eddies, where the mesh is sufficiently fine and the enrichment automatically computes the ensemble-averaged flow if the LES mesh is too coarse. As a result of the derivation, the RANS model is applied solely to the RANS degrees of freedom, which effectively prevents the typical issue of a log-layer mismatch in attached boundary layers. As the full Navier-Stokes equations are solved in the boundary layer, spatial refinement gradually yields wall-resolved LES with exact boundary conditions. Numerical tests show the outstanding characteristics of the wall model regarding grid independence, superiority compared to equilibrium wall models in separated flows, and achieve a speed-up by two orders of magnitude compared to wall-resolved LES.  相似文献   

6.
Large-eddy simulations (LES) still suffer from extremely large resources required for the resolution of the near-wall region, especially for high-Re flows. That is the main motivation for setting up hybrid LES–RANS methods. Meanwhile a variety of different hybrid concepts were proposed mostly relying on linear eddy-viscosity models. In the present study a hybrid approach based on an explicit algebraic Reynolds stress model (EARSM) is suggested. The model is applied in the RANS mode with the aim of accounting for the Reynolds stress anisotropy emerging especially in the near-wall region. For the implementation into a CFD code this anisotropy-resolving closure can be formally expressed in terms of a non-linear eddy-viscosity model (NLEVM). Its extra computational effort is small, still requiring solely the solution of one additional transport equation for the turbulent kinetic energy. In addition to this EARSM approach, a linear eddy-viscosity model (LEVM) is used in order to verify and emphasize the advantages of the non-linear model. In the present formulation the predefinition of RANS and LES regions is avoided and a gradual transition between both methods is assured. A dynamic interface criterion is suggested which relies on the modeled turbulent kinetic energy and the wall distance and thus automatically accounts for the characteristic properties of the flow. Furthermore, an enhanced version guaranteeing a sharp interface is proposed. The interface behavior is thoroughly investigated and it is shown how the method reacts on dynamic variations of the flow field. Both model variants, i.e. LEVM and EARSM, have been tested on the basis of the standard plane channel flow and even more detailed on the flow over a periodic arrangement of hills using fine and coarse grids.  相似文献   

7.
In this paper, a local mesh refinement (LMR) scheme on Cartesian grids for large‐eddy simulations is presented. The approach improves the calculation of ghost cell pressures and velocities and combines LMR with high‐order interpolation schemes at the LMR interface and throughout the rest of the computational domain to ensure smooth and accurate transition of variables between grids of different resolution. The approach is validated for turbulent channel flow and flow over a matrix of wall‐mounted cubes for which reliable numerical and experimental data are available. Comparisons of predicted first‐order and second‐order turbulence statistics with the validation data demonstrated a convincing agreement. Importantly, it is shown that mean streamwise velocities and fluctuating turbulence quantities transition smoothly across coarse‐to‐fine and fine‐to‐coarse interfaces. © 2016 The Authors International Journal for Numerical Methods in Fluids Published by John Wiley & Sons Ltd  相似文献   

8.
Accurate up-scaling is an essential part of creating a valid reservoir coarse scale dynamic model. In this article, unstructured discretization of spatial domain is accompanied by numerical permeability up-scaling in order to construct an accurate coarse scale model. A new technique for generating a course scale triangular mesh is presented in which the density of elements in key flow regions is kept high to capture accuracy. The fine scale permeability map is investigated using image processing techniques, especially steerable filters, and the results are converted into a high-resolution element size map. This element size map will be refined by the integration of other important factors such as well-position effects and used to construct a coarse triangular mesh. The combination of flux-continuous pressure approximation and mass conservative, total variation diminishing finite volume schemes have been considered to solve two phase flow equations on the control volume finite element mesh. Fine scale simulations results are compared with the coarse scale ones for a series of water flooding examples to investigate the efficiency and accuracy of the presented gridding methodology. This method is developed for 2D cases, but can be easily extended to 3D problems.  相似文献   

9.
Dual Mesh Method for Upscaling in Waterflood Simulation   总被引:4,自引:0,他引:4  
Detailed geological models typically contain many more cells than can be accommodated by reservoir simulation due to computer time and memory constraints. However, recovery predictions performed on a coarser upscaled mesh are inevitably less accurate than those performed on the initial fine mesh. Recent studies have shown how to use both coarse and fine mesh information during waterflooding simulations. In this paper, we present an extension of the dual mesh method (Verdière and Guérillot, 1996) which simulates water flooding injection using both the coarse and the original fine mesh information. The pressure field is first calculated on the coarse mesh. This information is used to estimate the pressure field within each coarse cell and then phase saturations are updated on the fine mesh. This method avoids the most time consuming step of reservoir simulation, namely solving for the pressure field on the fine grid. A conventional finite difference IMPES scheme is used considering a two phase fluid with gravity and vertical wells. Two upscaling methodologies are used and compared for averaging the coarse grid properties: geometric average and the pressure solve method. A series of test cases show that the method provides predictions similar to those of full fine grid simulations but using less computer time.  相似文献   

10.
This paper proposes a method for the creation of hybrid meshes with embedded surfaces for viscous flow simulations as an extension of the multiple marching direction approach (AIAA J. 2007; 45 (1):162–167). The multiple marching direction approach enables to place semi‐structured elements around singular points, where valid semi‐structured elements cannot be placed using conventional hybrid mesh generation methods. This feature is discussed first with a couple of examples. Elements sometimes need to be clustered inside a computational domain to obtain more accurate results. For example, solution features, such as shocks, vortex cores and wake regions, can be extracted during the process of adaptive mesh generation. These features can be represented as surface meshes embedded in a computational domain. Semi‐structured elements can be placed around the embedded surface meshes using the multiple marching direction approach with a pretreatment method. Tetrahedral elements can be placed easily instead. A couple of results are presented to demonstrate the capability of the mesh generation method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
基于格子玻尔兹曼方法LBM(Lattice Boltzmann Method)对多块网格方法(Multi-Block)的粗细网格交界结构进行了研究,提出了一种新的优化处理方案。解决了原有网格交界结构存在的三个问题,即两套插值运算造成的程序结构复杂的问题,存储前几个时间步的节点流场数据以备插值运算造成内存浪费的问题和基于时间插值结果进行空间插值计算造成插值误差积累的问题。用一次多点二维空间插值的方式,将原方法的空间和时间双插值,简并成一次空间插值。通过对经典的非定常的圆柱绕流算例和定常的标准顶盖方腔驱动流算例的仿真模拟,验证了交界面处质量、动量及应力的连续性以及网格交界面数据过渡的流畅度,最终验证了改进方法的正确性。数值模拟结果表明,改进后多块算法可实现局部网格细化,进一步推动LBM方法在实际工程问题中的应用。  相似文献   

12.
We investigate the performance of unsteady Reynolds-averaged Navier–Stokes (URANS) computation and various versions of detached eddy simulation (DES) in resolving coherent structures in turbulent flow around two cubes mounted in tandem on a flat plate at Reynolds number (Re) of 22,000 and for a thin incoming boundary layer. Calculations are carried out using four different coherent structure resolving turbulence models: (1) URANS with the Spalart–Allmaras model; (2) the standard DES [Spalart, P.R., Jou, W.H., Strelets, M., Allmaras, S.R., 1997. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In: Liu, C., Liu, Z., (Eds.), Advances in DNS/LES. Greyden Press, Columbus, OH]; (3) the Delayed DES (DDES); and (4) the DES with a low-Re modification (DES-LR) [Spalart, P., Deck, S., Shur, M., Squires, K., Strelets, M., Travin, A., 2006. A new version of detached eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn. 20 (3), 181–195]. The grid sensitivity of the computed solutions is examined by carrying out simulations on two successively refined grids. The computed results for all cases are compared with the experimental measurements of Martinuzzi and Havel [Martinuzzi, R., Havel, B., 2000. Turbulent flow around two interfering surface-mounted cubic obstacles in tandem arrangement. ASME J. Fluids Eng. 122, 24–31] for two different cube spacings. All turbulence models reproduce essentially identical separation of the approach thin boundary layer and yield an unsteady horseshoe vortex system consisting of multiple vortices in the leading edge region of the upstream cube. Significant discrepancies between the URANS and all DES solutions are observed, however, in other regions of interest such as the shear layers emanating from the cubes, the inter-cube gap and the downstream wake. Regardless of the grid refinement, URANS fails to capture key features of the mean flow, including the second horseshoe vortex in the upstream junction and recirculating flow on the top surface of the downstream cube for the large cube spacing, and underestimates significantly turbulence statistics in most regions of the flow for both cases. On the coarse mesh, all three DES approaches appear to yield very similar results and fail to reproduce the second horseshoe vortex. The standard DES and DDES solutions obtained on the fine meshes are essentially identical and both suffer from premature switching to unresolved DNS, due to the mis-interpretation of grid refinement as wall proximity, which leads to spurious vortices in the inter-cube region. Numerical solutions show that the low-Re modification (DES-LR) is critical prerequisite in DES on the ambiguously fine – not fine enough for full LES – mesh to prevent excessive nonlinear drop of the subgrid eddy viscosity in low cell-Re regions like in the inter-obstacle gap. Mean flow quantities and turbulence statistics obtained with DES-LR on the fine mesh are in good overall agreement with the measurements in most regions of interest for both cases.  相似文献   

13.
基于针对分子动力学-Cauchy连续体模型提出的连接尺度方法(BSM)[1,2],发展了耦合细尺度上基于离散颗粒集合体模型的离散单元法(DEM)和粗尺度上基于Cosserat连续体模型的有限元法(FEM)的BSM。仅在有限局部区域内采用DEM以从细观层次模拟非连续破坏现象,而在全域则采用花费计算时间和存储空间较少的FEM。通过连接尺度位移(包括平移和转动)分解,和基于作用于Cosserat连续体有限元节点和颗粒集合体颗粒形心的离散系统虚功原理,得到了具有解耦特征的粗细尺度耦合系统运动方程。讨论和提出了在准静态载荷条件下粗细尺度域的界面条件,以及动态载荷条件下可以有效消除粗细尺度域界面上虚假反射波的非反射界面条件(NRBC)。本文二维数值算例结果说明了所提出的颗粒材料BSM的可应用性和优越性,及所实施界面条件对模拟颗粒材料动力学响应的有效性。  相似文献   

14.
In this paper, a robust projection method on a locally refined mesh is proposed for two‐ and three‐dimensional viscous incompressible flows. The proposed method is robust not only when the interface between two meshes is located in a smooth flow region but also when the interface is located in a flow region with large gradients and/or strong unsteadiness. In numerical simulations, a locally refined mesh saves many grid points in regions of relatively small gradients compared with a uniform mesh. For efficiency and ease of implementation, we consider a two‐level blocked structure, for which both of the coarse and fine meshes are uniform Cartesian ones individually. Unfortunately, the introduction of the two‐level blocked mesh results in an important but difficult issue: coupling of the coarse and fine meshes. In this paper, by properly addressing the issue of the coupling, we propose a stable and accurate projection method on a locally refined staggered mesh for both two‐ and three‐dimensional viscous incompressible flows. The proposed projection method is based on two principles: the linear interpolation technique and the consistent discretization of both sides of the pressure Poisson equation. The proposed algorithm is straightforward owing to the linear interpolation technique, is stable and accurate, is easy to extend from two‐ to three‐dimensional flows, and is valid even when flows with large gradients cross the interface between the two meshes. The resulting pressure Poisson equation is non‐symmetric on a locally refined mesh. The numerical results for a series of exact solutions for 2D and 3D viscous incompressible flows verify the stability and accuracy of the proposed projection method. The method is also applied to some challenging problems, including turbulent flows around particles, flows induced by impulsively started/stopped particles, and flows induced by particles near solid walls, to test the stability and accuracy. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
The implementation of a spectrin‐link (SL) red blood cell (RBC) membrane method coupled with a lattice‐Boltzmann (LB) fluid solver is discussed. Details of the methodology are included along with subtleties associated with its integration into a massively parallel hybrid LB finite element (FE) suspension flow solver. A comparison of the computational performance of the coupled LB–SL method with that of the previously implemented LB–FE is given for an isolated RBC and for a dense suspension in Hagen–Poiseuille flow. Validating results for RBCs isolated in shear and parachuting in microvessel flow are also presented. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
The flow around a trailing edge is computed with a new hybrid method designed to more clearly separate the effects of total and sub-grid turbulent stress-modelling on the time-averaged and instantaneous velocity fields, and in turn, mean momentum and kinetic energy balances. These two velocity fields independently define Reynolds averaged and sub-grid-scale viscosities, and distinct stresses, at the same location. In particular, resolved eddies can emerge, or sweep in and out of the Reynolds averaged near wall layer, without being dampened by higher levels of the viscosity in this RANS dominated layer. The two-field hybrid model, first tested on channel flows, gives accurate predictions of mean velocities and stresses for different Reynolds numbers and coarse meshes. For the trailing edge flow the results of the hybrid model are close to the reference fine LES for mean velocity and turbulent content, whereas the DES-SST on the same coarse mesh gives too early separation.  相似文献   

17.
针对非均质饱和多孔介质弹塑性动力问题分析提出了一种广义耦合扩展多尺度有限元方法。首先,提出了基于细尺度等效刚度阵的粗尺度单元数值基函数构造方法,并给出了构造数值基函数的一般公式,所构造的耦合数值基函数有效考虑了动力相关效应与固液之间的耦合效应。其次,针对弹塑性非线性问题迭代求解,给出了基于摄动方法的位移与孔隙压强降尺度计算修正方案。最后,针对材料的强非均质特征,利用多节点粗单元技术来提高多尺度有限元方法的计算精度。通过与基于精细网格的传统有限元分析结果对比,验证了本文所提出方法的有效性与高效性。  相似文献   

18.
19.
20.
周帅  肖周芳  付琳  汪丁顺 《力学学报》2022,54(6):1732-1740
网格自适应技术和高阶精度数值方法是提升计算流体力学复杂问题适应能力的有效技术途径. 将这两项技术结合需要解决一系列技术难题, 其中之一是高阶精度流场插值. 针对高阶精度自适应流动计算, 提出一类高精度流场插值方法, 实现将前一迭代步网格中流场数值解插值到当前迭代步网格中, 以延续前一迭代步中的计算状态. 为实现流场插值过程中物理量守恒, 该方法先计算新旧网格的重叠区域, 然后将物理量从重叠区域的旧网格中转移到新网格中. 为满足高阶精度要求, 先采用k-exact最小二乘方法对旧网格上的数值解进行重构, 获得描述物理量分布的高阶多项式, 随后采用高阶精度高斯数值积分实现物理量精确地转移到新网格单元上. 最后, 通过一个具有精确解的数值算例和一个高阶精度自适应流动计算算例验证了本文算法的有效性. 第一个算例结果表明当网格规模固定不变时, 插值精度阶数越高, 插值误差越小; 第二个算例显示本文方法可以有效缩短高精度自适应流动计算的迭代收敛时间.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号