首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have grown self-assembled InGaAsN/GaP quantum dots (QDs) with an In composition of 50% via the Stranski–Krastanov growth mode of molecular-beam epitaxy, obtaining high-density InGaAsN islands of 8×1010 cm−2. When the InGaAsN islands are directly exposed to the P2 beam, we observe a quantum-well-like hetero-interface using cross-sectional transmission electron microscopy (XTEM). This result indicates that the InGaAsN island density is remarkably reduced by As/P exchange reactions. To suppress these exchange reactions, we deposit Ga corresponding to 1 monolayer on the InGaAsN islands. When the Ga deposition sequence is finished, we use XTEM to detect InGaAsN islands embedded in GaP, which indicates that As/P exchange reactions can be suppressed by Ga deposition. Subsequently, we grow a multiple-stacked InGaAsN/GaP 5QDs using the Ga deposition sequence and report their room-temperature photoluminescence spectra.  相似文献   

2.
The electronic structure and optical gain of InAsPN/GaP(N) quantum dots (QDs) are investigated in the framework of the effective-mass envelope function theory. The strain distribution is calculated using the valence force field (VFF) method. With GaP barrier, for smaller InAsPN QDs, the minimum transition energy may occur at a lower phosphorous (P) composition, but for larger QDs, the transition energy increases as P composition increases due to the increased bandgap of alloy QDs. When the nitrogen (N) composition increases, the transition energy decreases due to the stronger repulsion between the conduction band (CB) and the N resonant band, and the transition matrix element (TME) is more affected by the transition energy rather than N–CB mixing. To obtain laser materials with a lattice constant comparable to Si, we incorporated 2% of N into the GaP barrier. With this GaP0.98N0.02 barrier, the conduction band offset is reduced, so the quantum confinement is lower, resulting in a smaller transition energy and longer wavelength. At the same time, the TME is reduced and the optical gain is less than those without N in the barrier at a low carrier density, but the peak gain increases faster when the carrier density increases. Finally it can surpass and reach a greater saturation optical gain than those without N in the barrier. This shows that incorporating N into GaP barriers is an effective way to achieve desirable wavelength and optical gain.  相似文献   

3.
The hole confinement in type-II self-organized GaSb/GaAs quantum dots (QDs) was investigated by combining optical excitation and time-resolved capacitance spectroscopy. The experimental results indicate energy-selective charging even for type-II QDs. With increasing excitation energy the apparent hole activation energy decreases, which is attributed to light absorption in sub-ensembles of QDs with decreasing hole localization. The large localization energy of about 450 meV and the possibility of optical-multiplexing makes type-II GaSb/GaAs QDs a potential material system for QD memory concepts.  相似文献   

4.
Novel self-assembled quantum dots (QDs) in the GaSb/AlAs heterosystem were obtained and studied by means of transmission electron microscopy, steady-state and transient photoluminescence. A strong inter-mixing of both III and V group materials results in the fabrication of quaternary alloy QDs in the AlAs matrix. The QDs have atypical energy structure: band alignment of type I with the lowest electronic state at the indirect X minimum of the conduction band.  相似文献   

5.
We have investigated magneto-optical properties of GaSb/GaAs self-assemble type II quantum dots by single dot spectroscopy in magnetic field. We have observed clear Zeeman splitting and diamagnetic shift of GaSb/GaAs quantum dots. The diamagnetic coefficient ranges from 5 to 30 μeV/T2. The large coefficient and their large distribution are attributed to the size inhomogeneity and electron localization outside the dot. The g-factor of GaSb/GaAs quantum dots is slightly larger than that of similar type I InGaAs/GaAs quantum dots. In addition, we find almost linear relationship between the diamagnetic coefficient and the g-factor. The linear increase of g-factor with diamagnetic coefficient is due to an increase of spin-orbit interaction with dot size.  相似文献   

6.
We explore the Coulomb binding of electrons to holes confined to type-II GaSb self-assembled quantum dots. We demonstrate that at low laser power electrons are more weakly bound to holes trapped by the dots than to holes in the wetting layer. On the other hand, at high laser power the hydrogenic binding energy of dot excitons increases by more than a factor of two, and so exceeds that of wetting layer excitons. We attribute this to the strong binding of ‘core’ electrons to dots that are highly charged with holes by optical pumping.  相似文献   

7.
The properties of InSb quantum dots grown by metal organic vapour phase epitaxy are summarised as deduced from photoluminescence, magneto-photoluminescence, and far-infrared modulated photoluminescence experiments. A technique is described for shifting the emission of these dots to lower energy by coupling them with a narrow InAs quantum well, leading to the demonstration of electroluminescence at 2.3 μm.  相似文献   

8.
研究了GaSb/GaAs复合应力缓冲层上自组装生长的InAs量子点.在2ML GaSb/1ML GaAs复合应力缓冲层上获得了高密度的、沿[100]方向择优分布量子点.随着复合应力缓冲层中GaAs层厚度的不同,量子点的密度可以在1.2×1010cm-2和8×1010cm-2进行调控.适当增加GaAs层的厚度至5ML,量子点的发光波长红移了约25nm,室温下PL光谱波长接近1300nm. 关键词: 自组装量子点 分子束外延 Ⅲ-Ⅴ族化合物半导体  相似文献   

9.
Self-assembled GaSb quantum dots (QDs) with a photoluminescence wavelength longer than 1.3 μm were successfully grown by suppressing the replacement of As and Sb on the surface of the GaSb QDs. This result means that GaSb can thus join InAs or GaInAs as a suitable material for QD lasers for optical communications.  相似文献   

10.
刘柱  赵志飞  郭浩民  王玉琦 《物理学报》2012,61(21):413-419
采用八能带K-P理论以及有限差分方法,研究了沿[001]方向生长的InAs/GaSb二类断带量子阱体系的能带结构、波函数分布和对[110]方向线性偏振光的吸收特性.研究发现,通过改变InAs或GaSb层的厚度,可有效调节该量子阱体系的能带结构及波函数分布.计算结果表明,当InAs/GaSb量子阱的导带底与价带顶处于共振状态时,导带基态与轻空穴基态杂化效应很小,且导带基态与第一激发态的波函数存在较大的重叠,导带基态与第一激发态之间在布里渊区中心处的跃迁概率明显大于导带底与价带顶处于非共振状态时的跃迁概率.研究结果对基于InAs/GaSb二类断带量子阱体系的中远红外波段的新型级联激光器、探测器等光电器件的设计具有重要意义.  相似文献   

11.
讨论了不同In组分对InGaAsSb/GaSb量子阱能带结构,即带隙及带边不连续性(带阶)的影响。给出了较为精准的InGaAsSb禁带宽度与In组分的关系。分析了In组分对InGaAsSb/GaSb导带、价带带阶的作用。研究表明,随In组分的增加,InGaAsSb禁带宽度减小,应力加大,能带漂移增大,InGaAsSb/GaSb导带、价带的带阶减小。同时,利用上述研究结果合理地解释了InGaAsSb/GaSb自发发射谱的增益、发射峰位及半峰宽与In组分关系。研究In组分对InGaAsSb/GaSb量子阱能带结构及自发发射谱的影响,可以定性地解释已有的实验报道。  相似文献   

12.
Single quantum dots (QDs) have great potential as building blocks for quantum information processing devices. However, one of the major difficulties in the fabrication of such devices is the placement of a single dot at a pre-determined position in the device structure, for example, in the centre of a photonic cavity. In this article we review some recent investigations in the site-controlled growth of InAs QDs on GaAs by molecular beam epitaxy. The method we use is ex-situ patterning of the GaAs substrate by electron beam lithography and conventional wet or dry etching techniques to form shallow pits in the surface which then determine the nucleation site of an InAs dot. This method is easily scalable and can be incorporated with marker structures to enable simple post-growth lithographic alignment of devices to each site-controlled dot. We demonstrate good site-control for arrays with up to 10 micron spacing between patterned sites, with no dots nucleating between the sites. We discuss the mechanism and the effect of pattern size, InAs deposition amount and growth conditions on this site-control method. Finally we discuss the photoluminescence from these dots and highlight the remaining challenges for this technique. To cite this article: P. Atkinson et al., C. R. Physique 9 (2008).  相似文献   

13.
We investigate effects of annealing on GaSb quantum dots (QDs) formed by droplet epitaxy. Ga droplets grown on GaAs are exposed to Sb molecular beam and then annealed at Ta=340–450 °C for 1 min to form GaSb QDs. An atomic force microscope study shows that with the increase of Ta, the average diameter of dots increases by about 60%, while their density decreases to about 1/3. The photoluminescence (PL) of GaSb QDs is observed at around 1 eV only for those samples annealed above Ta=380 °C, which indicates that the annealing process plays an important role in forming high quality GaSb QDs.  相似文献   

14.
The local structure around the indium atoms in uncapped and capped InxGa1?xN quantum dots has been studied by In K‐edge extended X‐ray absorption fine structure (EXAFS) spectroscopy. The samples were grown by metal organic vapour phase epitaxy. The EXAFS was successfully applied to study the structural properties of buried quantum dots which are not optically active. The analysis revealed that capping the quantum dots with GaN does not affect the bond distances of the In—N and In—Ga, but makes the In—In distance shorter by 0.04 Å.  相似文献   

15.
Electronic structure of three-dimensional quantum dots   总被引:1,自引:0,他引:1  
We study the electronic structure of three-dimensional quantum dots using the Hartree-Fock approximation. The confining potential of the electrons in the quantum dot is assumed to be spatially isotropic and harmonic. For up to 40 interacting electrons the ground-state energies and ground-state wavefunctions are calculated at various interaction strengths. The quadrupole moments and electron densities in the quantum dot are computed. Hund's rule is confirmed and a shell structure is identified via the addition energies and the quadrupole moments. While most of the shell structure can be understood on the basis of the unperturbed non-interacting problem, the interplay of an avoided crossing and the Coulomb interaction results in an unexpected closed shell for 19 electrons. Received 5 November 2001 / Received in final form 12 November 2002 Published online 1st April 2003 RID="a" ID="a"e-mail: vorrath@physnet.uni-hamburg.de  相似文献   

16.
Self-organized formation and evolution of quantum dot (QD) ensembles with a multimodal size distribution is reported. Such ensembles form after fast deposition near the critical thickness during a growth interruption (GRI) prior to cap layer growth and consist of pure InAs truncated pyramids with heights varying in steps of complete InAs monolayers, thereby creating well-distinguishable sub-ensembles. Ripening during GRI manifests itself by an increase of sub-ensembles of larger QDs at the expense of sub-ensembles of smaller ones, leaving the wetting layer unchanged. The dynamics of the multimodal QD size distribution is theoretically described using a kinetic approach. Starting from a broad distribution of flat QDs, a predominantly vertical growth is found due to strain-induced barriers for nucleation of a next atomic layer on different facets. QDs having initially a shorter base length attain a smaller height, accounting for the experimentally observed sub-ensemble structure. The evolution of the distribution is described by a master equation, which accounts for growth or dissolution of the QDs by mass exchange between the QDs and the adatom sea. The numerical solution is in good agreement with the measured dynamics.  相似文献   

17.
18.
Performing optical spectroscopy of highly homogeneous quantum dot arrays in ultrahigh magnetic fields, an unprecedently well resolved Fock-Darwin spectrum is observed. The existence of up to four degenerate electronic shells is demonstrated where the magnetic field lifts the initial degeneracies, which reappear when levels with different angular momenta come into resonance. The resulting level shifting and crossing pattern also show evidence of many-body effects such as the mixing of configurations and exciton condensation at the resonances.  相似文献   

19.
In this paper, the electronic structure of an asymmetric self-assembled vertically coupled quantum dots heterostructure has been investigated. The structure consists of two ellipsoidal quantum dot (QDs) caps made with InAs embedded in a wetting layer InAs and surrounded by GaAs. Using the strain dependent k·p theory, the energy of the two lowest states of a single electron/hole which is confined within the coupled QD structure has been calculated. As a result, it can be estimated the energy gap for different geometry parameters and for tuning the external magnetic field. The numerical results show that the energy gap is very sensitive to the size asymmetry of the structure and to the small separation distance of the dots but less sensitive to the existence of an external magnetic field and large interdot distance.  相似文献   

20.
We theoretically investigate the single- and few-electron ground-states properties of HgTe topological insulator quantum dots with rectangular hard-wall confining potential using configuration interaction method. For the case of single electron, the edge states is robust against the deformation from a square quantum dot to a rectangular ones, in contrast to the bulk states, the energy gap of the QDs increased due to the coupling of the opposite edge states; for the case of few electrons, the electrons first fill the edge states in the bulk band gap and the addition energy exhibit universal even-odd oscillation due to the shape-independent two-fold degeneracy of the edge states. The size of this edge shell can be controlled by tuning the dot size, shape or the bulk band gap via lateral or vertical electric gating respectively of the HgTe quantum dot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号