首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dispersive liquid–liquid microextraction (DLLME) high-performance liquid chromatography (HPLC) was developed for extraction and determination of triazines from honey. A room temperature ionic liquid, 1-hexyl-3-methylimidazolium hexafluorophosphate [C6MIM][PF6.], was used as extraction solvent and Triton X 114 was used as dispersant. A mixture of 175 μL [C6MIM][PF6] and 50 μL 10% Triton X 114 was rapidly injected into the 20 mL honey sample by syringe. After extraction, phase separation was performed by centrifugation and the sedimented phase was analyzed by HPLC. Some experimental parameters, such as type and volume of extraction solvent, concentration of dispersant, pH value of sample solution, salt concentration and extraction time were investigated and optimized. The detection limits for chlortoluron, prometon, propazine, linuron and prebane are 6.92, 5.84, 8.55, 8.59 and 5.31 μg kg−1, respectively. The main advantages of the proposed method are simplicity of operation, low cost, high enrichment factor and extraction solvent volume at microliter level. Honey samples were analyzed by the proposed method and obtained results indicated that the proposed method provides acceptable recoveries and precisions.  相似文献   

2.
A stir membrane liquid phase microextraction procedure working under the three-phase mode is proposed for the first time for the determination of six anti-inflammatory drugs in human urine. The target compounds are isolated and preconcentrated using a special device that integrates the extractant and the stirring element. An alkaline aqueous solution is used as extractant phase while 1-octanol is selected as supported liquid membrane solvent. After the extraction, all the analytes are determined by liquid chromatography (LC) with ultraviolet detection (UV). The analytical method is optimized considering the main involved variables (e.g., pH of donor and acceptor phases, extraction time, stirring rate) and the results indicate that the determination of anti-inflammatory drugs at therapeutic and toxic levels is completely feasible. The limits of detection are in the range from 12.6 (indomethacin) to 30.7 μg/L (naproxen). The repeatability of the method, expressed as relative standard deviation (RSD, n = 5) varies between 3.4% (flurbiprofen) and 5.7% (ketoprofen), while the enrichment factors are in the range from 35.0 (naproxen) to 72.5 (indomethacin).  相似文献   

3.
A novel microextraction method termed ionic liquid dispersive liquid–liquid microextraction (IL-DLLME) combining high-performance liquid chromatography with diode array detection (HPLC-DAD) was developed for the determination of insecticides in water samples. Four heterocyclic insecticides (fipronil, chlorfenapyr, buprofezin, and hexythiazox) were selected as the model compounds for validating this new method. This technique combines extraction and concentration of the analytes into one step, and the ionic liquid was used instead of a volatile organic solvent as the extraction solvent. Several important parameters influencing the IL-DLLME extraction efficiency such as the volume of extraction solvent, the type and volume of disperser solvent, extraction time, centrifugation time, salt effect as well as acid addition were investigated. Under the optimized conditions, good enrichment factors (209–276) and accepted recoveries (79–110%) were obtained for the extraction of the target analytes in water samples. The calibration curves were linear with correlation coefficient ranged from 0.9947 to 0.9973 in the concentration level of 2–100 μg/L, and the relative standard deviations (RSDs, n = 5) were 4.5–10.7%. The limits of detection for the four insecticides were 0.53–1.28 μg/L at a signal-to-noise ratio (S/N) of 3.  相似文献   

4.
A dispersive liquid–liquid microextraction (DLLME) method followed by high-performance liquid chromatography–triple quadrupole mass spectrometry has been developed for the simultaneous determination of linear alkylbenzene sulfonates (LAS C10, C11, C12, and C13), nonylphenol (NP), nonylphenol mono- and diethoxylates (NP1EO and NP2EO), and di-(2-ethylhexyl)phthalate (DEHP). The applicability of the method has been tested by the determination of the above mentioned organic pollutants in tap water and wastewater. Several parameters affecting DLLME, such as, the type and volume of the extraction and disperser solvents, sample pH, ionic strength and number of extractions, have been evaluated. Methanol (1.5 mL) was selected among the six disperser solvent tested. Dichlorobenzene (50 μL) was selected among the four extraction solvent tested. Enrichment factor achieved was 80. Linear ranges in samples were 0.01–3.42 μg L−1 for LAS C1013 and NP2EO, 0.09–5.17 μg L−1 for NP1EO, 0.17–9.19 μg L−1 for NP and 0.40–17.9 μg L−1 for DEHP. Coefficients of correlation were higher than 0.997. Limits of quantitation in tap water and wastewater were in the ranges 0.009–0.019 μg L−1 for LAS, 0.009–0.091 μg L−1 for NP, NP1EO and NP2EO and 0.201–0.224 μg L−1 for DEHP. Extraction recoveries were in the range from 57 to 80%, except for LAS C10 (30–36%). The method was successfully applied to the determination of these pollutants in tap water and effluent wastewater from Seville (South of Spain). The DLLME method developed is fast, easy to perform, requires low solvent volumes and allows the determination of the priority hazardous substances NP and DEHP (Directive 2008/105/EC).  相似文献   

5.
A method for the highly sensitive determination of 2-, 3- and 4-nitrophenols was developed using reverse-phase high-performance liquid chromatography (RP-HPLC) with a UV photodiode array detector. Using a reverse-phase column and 40% aqueous acetonitrile as an eluent (i.e. isocratic elution), the integrated peak area of detector output was linear up to 300 mg/L and the detection limit was 150 µg/L. The sensitivity of this detection method was improved by pretreating the sample solutions with a solvent extraction procedure that makes use of the high partition coefficient of ethyl acetate (EA)/water system. To find an optimum condition for the extraction procedure, this process was simulated by plotting the concentration of nitrophenol extracted in organic solvent against the volume multiplication factor at various partition coefficient of solute. This simulation demonstrated that EA is a superior extractant to other organic solvents. With the newly developed method, the detection limit was extended to 0.3 µg/L. This method offers fast, reliable and more sensitive determination of nitrophenol isomers than any other HPLC method.  相似文献   

6.
Dispersive solid-phase extraction (DSPE) combined with dispersive liquid–liquid microextraction (DLLME) has been developed as a new approach for the extraction of four sulfonylurea herbicides (metsulfuron-methyl, chlorsulfuron, bensulfuron-methyl and chlorimuron-ethyl) in soil prior to high-performance liquid chromatography with diode array detection (HPLC-DAD). In the DSPE-DLLME, sulfonylurea herbicides were first extracted from soil sample into acetone–0.15 mol L−1 NaHCO3 (2:8, v/v). The clean-up of the extract by DSPE was carried out by directly adding C18 sorbent into the extract solution, followed by shaking and filtration. After the pH of the filtrate was adjusted to 2.0 with 2 mol L−1 HCl, 60.0 μL chlorobenzene (as extraction solvent) was added into 5.0 mL of it for DLLME procedure (the acetone contained in the solution also acted as dispersive solvent). Under the optimum conditions, the enrichment factors for the compounds were in the range between 102 and 216. The linearity of the method was in the range from 5.0 to 200 ng g−1 with the correlation coefficients (r) ranging from 0.9967 to 0.9987. The method detection limits were 0.5–1.2 ng g−1. The relative standard deviations varied from 5.2% to 7.2% (n = 5). The relative recoveries of the four sulfonylurea herbicides from soil samples at spiking levels of 6.0, 20.0 and 60.0 ng g−1 were in the range between 76.3% and 92.5%. The proposed method has been successfully applied to the analysis of the four target sulfonylurea herbicides in soil samples, and a satisfactory result was obtained.  相似文献   

7.
A simple, selective, sensitive and inexpensive method of hollow fiber-based liquid–liquid–liquid microextraction (HF-LLLME) combined with high performance liquid chromatography (HPLC)-ultraviolet (UV) detection was developed for the determination of four acidic phytohormones (salicylic acid (SA), indole-3-acetic acid (IAA), (±) abscisic acid (ABA) and (±) jasmonic acid (JA)) in natural coconut juice. To the best of our knowledge, this is the first report on the use of liquid phase microextraction (LPME) as a sample pretreatment technique for the simultaneous analysis of several phytohormones. Using phenetole to fill the pores of hollow fiber as the organic phase, 0.1 mol L−1 NaOH solution in the lumen of hollow fiber as the acceptor phase and 1 mol L−1 HCl as the donor phase, a simultaneous preconcentration of four target phytohormones was realized. The acceptor phase was finally withdrawn into the microsyringe and directly injected into HPLC for the separation and quantification of the target phytohormones. The factors affecting the extraction efficiency of four phytohormones by HF-LLLME were optimized with orthogonal design experiment, and the data was analyzed by Statistical Product and Service Solutions (SPSS) software. Under the optimized conditions, the enrichment factors for SA, IAA, ABA and JA were 243, 215, 52 and 48, with the detection limits (S/N = 3) of 4.6, 1.3, 0.9 ng mL−1 and 8.8 μg mL−1, respectively. The relative standard deviations (RSDs, n = 7) were 7.9, 4.9, 6.8% at 50 ng mL−1 level for SA, IAA, ABA and 8.4% at 500 μg mL−1 for JA, respectively. To evaluate the accuracy of the method, the developed method was applied for the simultaneous analysis of several phytohormones in five natural coconut juice samples, and the recoveries for the spiked samples were in the range of 88.3–119.1%.  相似文献   

8.
A simple and cost effective sample pre-treatment method, dispersive liquid–liquid microextraction (DLLME), has been developed for the extraction of six fluoroquinolones (FQs) from chicken liver samples. Clean DLLME extracts were analyzed for fluoroquinolones using liquid chromatography with diode array detection (LC-DAD). Parameters such as type and volume of disperser solvent, type and volume of extraction solvent, concentration and composition of phosphoric acid in the disperser solvent and pH were optimized. Linearity in the concentration range of 30–500 μg kg−1 was obtained with regression coefficients ranging from 0.9945 to 0.9974. Intra-day repeatability expressed as % RSD was between 4 and 7%. The recoveries determined in spiked blank chicken livers at three concentration levels (i.e. 50, 100 and 300 μg kg−1) ranged from 83 to 102%. LODs were between 5 and 19 μg kg−1 while LOQs ranged between 23 and 62 μg kg−1. All of the eight chicken liver samples obtained from the local supermarkets were found to contain at least one type of fluoroquinolone with enrofloxacin being the most commonly detected. Only one sample had four fluoroquinolone antibiotics (ciprofloxacin, difloxacin, enrofloxacin, norfloxacin). Norfloxacin which is unlicensed for use in South Africa was also detected in three of the eight chicken liver samples analyzed. The concentration levels of all FQs antibiotics in eight samples ranged from 8.8 to 35.3 μg kg−1, values which are lower than the South African stipulated maximum residue limits (MRL).  相似文献   

9.
The novelties of this approach are introducing the self-settled dispersive liquid–liquid microextraction technique to remove the centrifuging step, conducting the dispersive liquid–liquid microextraction in complex organic systems, applicability of water as disperser phase, and inclusion microextraction of charged porphyrins by nano-baskets of calix[4]arenes, which act as the settling agents as well as the inclusion ligands. Diacid p-tert-butylcalix[4]arene in the cone conformation was synthesized and used. The related parameters including ligand concentration, volume of water disperser, salt effect, and extraction time were optimized. The linear range, detection limit (S/N?=?3) and precision (RSD, n?=?6) were determined to be 0.2–50, 0.07?μg?L?1 and 5.3%, respectively. The established method was applied to determine the target compound in five samples of live crude oil, were sampled from an Iranian offshore field. Owing to the overall differences (such as organic media, inclusion extraction, water-soluble ligands, etc.), the comparison of the proposed method with the traditional liquid–liquid microextraction was inapplicable. These results revealed that the new approach is competitive analytical tool and an alternative of the traditional methods in the crude oil and related systems. Moreover, in those systems that the inclusion separation is not requested, it is possible to use a tertiary system including a proper extraction agent/solvent and calixarene phase, as settling agent, along with the aqueous disperser in the organic systems.  相似文献   

10.
In this article a dispersive liquid?Cliquid microextraction method was applied for evaluation of lithium separation from aqueous solution. Benzo-15-crown-5 (B15C5) was used as a chelating agent prior to extraction. An appropriate mixture of disperser solvent and extraction solvent were added rapidly into the aqueous sample containing lithium ion; as a result, a cloudy solution was formed which consisted of fine droplets of extraction solvent dispersed entirely into aqueous phase. The mixture was centrifuged and the lithium complex with B15C5 was sedimented at the bottom of the conical sample holder. Then, 2.0?mL of enriched phase containing lithium complex was used for determination of lithium ion by flame atomic absorption spectrometry. The conditions for the microextraction performance were investigated. Under the best optimized conditions, the accepted recovery factors for the lithium obtained, ranged from 37.24 to 99.63?%. Furthermore, high preconcentration factors (7.46?C19.93) were also achieved. The relative standard deviation for three replicate measurements of 0.127?mg?L?1 of lithium was 2.83?%.  相似文献   

11.
A fast, simple, and sensitive HPLC–FD method is described for determination of ochratoxin A (OTA) in pig kidney and muscle; a small mass (<2.5 g) of sample and a relatively small volume (<15 mL) of a non-halogenated extraction solvent are required. Ochratoxin B, systematically absent from all the samples investigated, was used as internal standard. Liquid–liquid partition was used for sample clean-up. Recoveries at the 1 ng g–1 level were 86±15% and 74±8% for kidney and muscle, respectively, and detection limits were 0.14 and 0.15 ng g–1. Clean-up by solid-phase extraction (SPE) is required for pig liver. A survey of the OTA content of tissues of pigs slaughtered in southern Italy revealed that 52 out of 54 analysed samples were contaminated; the OTA concentration in kidney ranged between 0.26 and 3.05 ng g–1. The effect of measurement precision on compliance with legal limits is also discussed.  相似文献   

12.
The unique physico-chemical properties of gold nanoparticles portrayed in their chemical stability, the size-dependent electrochemistry, and the unusual optical properties make them suitable modifiers of various surfaces used in the fields of optical devices, electronics, and biosensors. In this work we present two different methods to obtain metallic gold nanoparticles at a liquid–liquid interface, and to control their growth by adjusting the experimental conditions. Decamethylferrocene (DMFC), used as an oxidizable compound dissolved in an organic solvent that is spread as a thin film on the surface of graphite electrode, serves as a redox partner to exchange electrons across the liquid–liquid interface with the other redox counter-partner [AuCl4]? present in the conjoined water phase. The interfacial electron transfer between the DMFC and the [AuCl4]? ions leads to deposition of metallic gold nanoparticles at the liquid–liquid interface. The structure and features of the deposited Au nanoparticles were studied by means of microscopic and voltammetric techniques. The morphology of the Au deposit depends on the concentration ratio of redox partners and both electrode and liquid–liquid interfacial potential differences. Depending on whether the Au deposit was obtained by ex situ (at open circuit potential) or by “in situ” (by cycling of the electrode potential) approach, we observed quite different effects to the ion transfer reactions probed by the thin-film electrode set-up. The possible reasons for the different behavior of the Au nanoparticles are discussed in terms of the structure and the properties of the obtained Au deposit. In separate experiments, we have demonstrated catalytic effects of the Au nanoparticles towards enhancing the electron transfer between DMFC and two aqueous redox substrates, hexacyanoferrate and hydrogen peroxide.  相似文献   

13.
A new dispersive liquid–liquid microextraction based on solidification of floating organic droplet method (DLLME-SFO) was developed for the determination of volatile aldehyde biomarkers (hexanal and heptanal) in human blood samples. In the derivatization and extraction procedure, 2,4-dinitrophenylhydrazine (DNPH) as derivatization reagent and formic acid as catalyzer were injected into the sample solution for derivatization with aldehydes, then the formed hydrazones was rapidly extracted by dispersive liquid–liquid microextraction with 1-dodecanol as extraction solvent. After centrifugation, the floated droplet was solidified in an ice bath and was easily removed for analysis. The effects of various experimental parameters on derivatization and extraction conditions were studied, such as the kind and volume of extraction solvent and dispersive solvent, the amount of derivatization reagent, derivatization temperature and time, extraction time and salt effect. The limit of detections (LODs) for hexanal and heptanal were 7.90 and 2.34 nmol L−1, respectively. Good reproducibility and recovery of the method were also obtained. The proposed method is an alternative approach to the quantification of volatile aldehyde biomarkers in complex biological samples, being more rapid and simpler and providing higher sensitivity compared with the traditional dispersive liquid–liquid microextraction (DLLME) methods.  相似文献   

14.
A selective and low organic-solvent-consuming method of sample preparation combined with high-performance liquid chromatography with diode-array detection is introduced for analysis of phthalic acid esters in edible oils. Sample treatment involves initial liquid–liquid partitioning with acetonitrile, then QuEChERS cleanup by dispersive solid-phase extraction with primary secondary amine as sorbent. Preconcentration of the analytes is performed by ionic-liquid-based dispersive liquid–liquid microextraction, with the cleaned-up extract as disperser solvent and 1-hexyl-3-methylimidazolium hexafluorophosphate as extraction solvent. Under the optimized conditions, correlation coefficients (r) were 0.998–0.999 and standard errors (S y/x ) were 2.67–3.37?×?103 for calibration curves in the range 50–1000 ng g?1. Detection limits, at a signal-to-noise ratio of 3, ranged from 6 to 9 ng g?1. Intra-day and inter-day repeatability, expressed as relative standard deviation, were in the ranges 1.0–6.9 % and 2.4–9.4 %, respectively. Recovery varied between 84 % and 106 %. The developed method was successfully used for analysis of the analytes in 28 edible oils. The dibutyl phthalate content of four of the 28 samples (14 %) exceeded the specific migration limit established by domestic and international regulations.
Figure
?  相似文献   

15.
A novel derivatization-ultrasonic assisted-dispersive liquid–liquid microextraction (UA-DLLME) method for the simultaneous determination of 11 main carbohydrates in tobacco has been developed. The combined method involves pressurized liquid extraction (PLE), derivatization, and UA-DLLME, followed by the analysis of the main carbohydrates with a gas chromatography-flame ionization detector (GC-FID). First, the PLE conditions were optimized using a univariate approach. Then, the derivatization methods were properly compared and optimized. The aldononitrile acetate method combined with the O-methoxyoxime-trimethylsilyl method was used for derivatization. Finally, the critical variables affecting the UA-DLLME extraction efficiency were searched using fractional factorial design (FFD) and further optimized using Doehlert design (DD) of the response surface methodology. The optimum conditions were found to be 44 μL for CHCl3, 2.3 mL for H2O, 11% w/v for NaCl, 5 min for the extraction time and 5 min for the centrifugation time. Under the optimized experimental conditions, the detection limit of the method (LODs) and linear correlation coefficient were found to be in the range of 0.06–0.90 μg mL−1 and 0.9987–0.9999. The proposed method was successfully employed to analyze three flue-cured tobacco cultivars, among which the main carbohydrate concentrations were found to be very different.  相似文献   

16.
17.
Basic studies on the photochemical behaviour of trans-resveratrol and its photoproduct are reported. Photometrically and fluorimetrically calculated acidity constants of the former were determined. The usefulness of the determination of resveratrol by photochemically induced fluorescence and second-derivative photochemically induced fluorescence was also examined. The very weakly fluorescent trans-resveratrol is converted into a highly fluorescent photoproduct by irradiating hydroethanolic solutions of trans-resveratrol containing 40% v/v of ethanol for 60 s with intense UV radiation. The photoproduct presents excitation and emission maxima centred at 260 nm, and 364 and 382 nm, respectively. Under these conditions, a linear relationship between fluorescence intensity and trans-resveratrol concentration was found between 6.6 and 66 ng mL−1. Optimum conditions for the extraction of trans-resveratrol from an aqueous phase at pH 5.0 with diethylether were a phase ratio (aqueous/organic) of 2, a shaking time of 60 s and a buffer concentration of 0.15 mol L−1. An extraction recovery of 100% was reached under these conditions. The optimized extraction procedure was applied to the analysis of resveratrol in wine samples, employing the amplitude between 356 and 364 nm of the second-derivative photoinduced emission spectrum as analytical signal. It was found that there is not matrix effect and recoveries around 100% were obtained at different fortification levels.  相似文献   

18.
Dispersive liquid–liquid microextraction (DLLME) and hollow fiber liquid–liquid–liquid microextraction (HF-LLLME) combined with HPLC–DAD have been applied for the determination of three narcotic drugs (alfentanil, fentanyl, and sufentanil) in biological samples (human plasma and urine). Different DLLME parameters influencing the extraction efficiency such as type and volume of the extraction solvent and the disperser solvent, concentration of NaOH, and salt addition were investigated. In the HF-LLLME, the effects of important parameters including organic solvent type, concentration of NaOH as donor solution, concentration of H2SO4 as acceptor phase, salt addition, stirring rate, temperature, and extraction time were investigated and optimized. The results showed that both extraction methods exhibited good linearity, precision, enrichment factor, and detection limit. Under optimal condition, the limits of detection ranged from 0.4 to 1.9 μg/L and from 1.1 to 2.3 μg/L for DLLME and HF-LLLME, respectively. For DLLME, the intra- and inter-day precisions were 1.7–6.4% and 14.2–15.9%, respectively; and for HF-LLLME were 0.7–5.2% and 3.3–10.1%, respectively. The enrichment factors were from 275 to 325 and 190 to 237 for DLLME and HF-LLLME, respectively. The applicability of the proposed methods was investigated by analyzing biological samples. For analysis of human plasma and urine samples, HF-LLLME showed higher precision, more effective sample clean-up, higher extraction efficiency, lower organic solvent consumption than DLLME.  相似文献   

19.
A simple, rapid and efficient method, dispersive liquid–liquid microextraction (DLLME) in conjunction with high-performance liquid chromatography (HPLC), has been developed for the determination of three carbamate pesticides (methomyl, carbofuran and carbaryl) in water samples. In this extraction process, a mixture of 35 µL chlorobenzene (extraction solvent) and 1.0 mL acetonitrile (disperser solvent) was rapidly injected into the 5.0 mL aqueous sample containing the analytes. After centrifuging (5 min at 4000 rpm), the fine droplets of chlorobenzene were sedimented in the bottom of the conical test tube. Sedimented phase (20 µL) was injected into the HPLC for analysis. Some important parameters, such as kind and volume of extraction and disperser solvent, extraction time and salt addition were investigated and optimised. Under the optimum extraction condition, the enrichment factors and extraction recoveries ranged from 148% to 189% and 74.2% to 94.4%, respectively. The methods yielded a linear range in the concentration from 1 to 1000 µg L?1 for carbofuran and carbaryl, 5 to 1000 µg L?1 for methomyl, and the limits of detection were 0.5, 0.9 and 0.1 µg L?1, respectively. The relative standard deviations (RSD) for the extraction of 500 µg L?1 carbamate pesticides were in the range of 1.8–4.6% (n = 6). This method could be successfully applied for the determination of carbamate pesticides in tap water, river water and rain water.  相似文献   

20.
The nano-LC technique is increasingly used for both fast studies on enantiomeric analysis and test beds of novel stationary phases due to the small volumes involved and the short conditioning and analysis times. In this study, the enantioseparation of 10 drugs from different families was carried out by nano-LC, utilizing silica with immobilized amylose tris(3-chloro-5-methylphenylcarbamate) column. The effect on chiral separation caused by the addition of different salts to the mobile phase was evaluated. To simultaneously separate as many enantiomers as possible, the effect of buffer concentration in the mobile phase was studied, and, to increase the sensitivity, a liquid–liquid microextraction based on the use of isoamyl acetate as sustainable extraction solvent was applied to pre-concentrate four chiral drugs from tap and environmental waters, achieving satisfactory recoveries (>70%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号