首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We show that in supersymmetric models with explicit flavor lepton number violation due to soft supersymmetry breaking mass terms there could be detectable flavor lepton number violation in slepton decays. We estimate the potential for discovery of lepton flavor number violation in slepton decays at LHC. Pis’ma Zh. éksp. Teor. Fiz. 65, No. 2, 139–144 (25 January 1997) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

2.
Recent LHC data showed excesses of Higgs-like signals at the Higgs mass of around 125 GeV. This may indicate supersymmetric models with relatively heavy scalar fermions to enhance the Higgs mass. The desired mass spectrum is realized in the anomaly-mediated supersymmetry breaking model, in which the Wino can naturally be the lightest superparticle (LSP). We discuss possibilities for confirming such a scenario, particularly detecting signals from Wino LSP at direct detection experiments, indirect searches at neutrino telescopes and at the LHC.  相似文献   

3.
The last 2 years has seen an immense amount of activity and results from the Large Hadron Collider (LHC). Most notable is the discovery of a new particle which may very well be the long sought Higgs boson associated with electroweak symmetry breaking. There have also been many (up to now) unsuccessful searches for new particles associated with supersymmetry. One of the most attractive candidates for dark matter is the lightest supersymmetric particle (LSP). The recent results from the LHC have had a dramatic impact on our expectations for the properties of the LSP. These results can be used to revise expectations for both direct and indirect detection of dark matter.  相似文献   

4.
We review the sources and phenomenology of non-minimal flavor violation in the MSSM. We discuss in some detail the most important theoretical and experimental constraints, as well as promising observables to look for supersymmetric effects at the LHC and in future experiments. We emphasize the sensitivity of flavor physics to the mechanism of supersymmetry breaking and to new degrees of freedom present at fundamental scales, such as the grand unification scale. We include a discussion of present data that may hint at departures from the standard model.  相似文献   

5.
Theories in which supersymmetry is broken on another brane, which is separated from the minimal supersymmetry standard model (MSSM) matter fields in an extra dimension, are attractive because they may solve the supersymmetric flavor problem. We consider the effects in such theories of new messenger fields with standard model gauge charges and with direct couplings to the supersymmetry breaking sector. The effect on the masses of the MSSM superpartners can be dramatic. In particular, the tachyonic slepton problem of anomaly mediation and the stable slepton problem of gaugino mediation can be cured.  相似文献   

6.
Charged lepton flavor violation (CLFV) is a clear signal of new physics; it directly addresses the physics of flavor and of generations. The search for CLFV has continued from the early 1940s, when the muon was identified as a separate particle, until today. Certainly in the LHC era the motivations for continued searches are clear and have been covered in many reviews. This review is focused on the experimental history with a view toward how these searches might progress. We examine the status of searches for charged lepton flavor violation in the muon, tau, and other channels, and then examine the prospects for new efforts over the next decade. Finally, we examine what paths might be taken after the conclusion of upcoming experiments and what facilities might be required.  相似文献   

7.
The prospects for detecting a candidate supersymmetric dark matter particle at the LHC are reviewed, and compared with the prospects for direct and indirect searches for astrophysical dark matter. The discussion is based on a frequentist analysis of the preferred regions of the Minimal supersymmetric extension of the Standard Model with universal soft supersymmetry breaking (the CMSSM). LHC searches may have good chances to observe supersymmetry in the near future - and so may direct searches for astrophysical dark matter particles, whereas indirect searches may require greater sensitivity, at least within the CMSSM.  相似文献   

8.
The messengers of Gauge-Mediation Models can couple to standard-model matter fields through renormalizable superpotential couplings. These matter-messenger couplings generate generation-dependent sfermion masses and are therefore usually forbidden by discrete symmetries. However, the non-trivial structure of the standard-model Yukawa couplings hints at some underlying flavor theory, which would necessarily control the sizes of the matter-messenger couplings as well. Thus for example, if the doublet messenger and the Higgs have the same properties under the flavor theory, the resulting messenger-lepton couplings are parametrically of the same order as the lepton Yukawas, so that slepton mass-splittings are similar to those of minimally-flavor-violating models and therefore satisfy bounds on flavor-violation, with, however, slepton mixings that are potentially large. Assuming that fermion masses are explained by a flavor symmetry, we construct viable and natural models with messenger-lepton couplings controlled by the flavor symmetry. The resulting slepton spectra are unusual and interesting, with slepton mass-splittings and mixings that may be probed at the LHC. In particular, since the new contributions are typically negative, and since they are often larger for the first- and second-generation sleptons, some of these examples have the selectron or the smuon as the lightest slepton, with mass splittings of a few to tens of GeV.  相似文献   

9.
《Nuclear Physics B》2001,600(1):39-61
We discuss the phenomenology of the lightest neutralino in models where an effective bilinear term in the superpotential parametrizes the explicit breaking of R-parity. We consider supergravity scenarios where the lightest supersymmetric particle (LSP) is the lightest neutralino and which can be explored at LEP2. We present a detailed study of the LSP decay properties and general features of the corresponding signals expected at LEP2. We also contrast our model with gauge mediated supersymmetry breaking.  相似文献   

10.
D P ROY 《Pramana》2011,76(5):741-756
I discuss LHC physics in the historical perspective of the progress in particle physics. After a recap of the Standard Model (SM) of particle physics, I discuss the high energy colliders leading up to LHC and their role in the discovery of these SM particles. Then I discuss the two main physics issues of LHC, i.e. Higgs mechanism and supersymmetry. I briefly touch upon Higgs and SUSY searches at LHC along with their cosmological implications.  相似文献   

11.
One of the main motivations for the experiments at the Large Hadron Collider (LHC), scheduled to start around 2006, is to search for supersymmetric particles. The region of the parameter space of the minimal supersymmetric standard model, where supersymmetry can be discovered, is investigated. We show that if supersymmetry exists at the electroweak scale, it would be easy to find signals for it at the LHC. If the LHC does find supersymmetry, this would be one of the greatest achievements in the history of theoretical physics.  相似文献   

12.
Once neutrinoless double beta decay is discovered, the question which mechanism triggers the decay becomes crucial for drawing any conclusion about the concrete physics underlying the process, like the neutrino Majorana mass. For example, in the minimal supersymmetric extension with R-parity violation both neutrino Majorana masses and superpartners can trigger the decay. We show that in this case, if the decay is triggered by superpartners, there exist good prospects to observe single slepton production at the LHC. Resonant single slepton production at the LHC can therefore discriminate between the neutrinoless double beta decay mechanism and others.  相似文献   

13.
Within multi-Higgs-doublet models, one can impose symmetries on the Higgs potential, either discrete or continuous, that mix several doublets. In two-Higgs-doublet model any such symmetry can be conserved or spontaneously violated after the electroweak symmetry breaking (EWSB), depending on the coefficients of the potential. With more than two doublets, there exist symmetries which are always spontaneously violated after EWSB. We discuss the origin of this phenomenon and show its similarity to frustration in condensed matter physics.  相似文献   

14.
The semi-constrained NMSSM(scNMSSM) extends the MSSM by a singlet field, and requires unification of the soft SUSY breaking terms in the squark and slepton sectors, while it allows that in the Higgs sector to be different. We try to interpret the muon g-2 in the sc NMSSM, under the constraints of 125 Ge V Higgs data, B physics,searches for low and high mass resonances, searches for SUSY particles at the LHC, dark matter relic density by WMAP/Planck, and direct searches for dark matter by LUX, XENON1T, and PandaX-II. We find that under the above constraints, the sc NMSSM can still(i) satisfy muon g-2 at 1σ level, with a light muon sneutrino and light chargino;(ii) predict a highly-singlet-dominated 95 GeV Higgs, with a diphoton rate as hinted at by CMS data,because of a light higgsino-like chargino and moderate λ;(iii) get low fine tuning from the GUT scale with smallμeff, M_0, M_(1/2), and A_0, with a lighter stop mass which can be as low as about 500 GeV, which can be further checked in future studies with search results from the 13 TeV LHC;(iv) have the lightest neutralino be singlino-dominated or higgsino-dominated, while the bino and wino are heavier because of high gluino bounds at the LHC and universal gaugino conditions at the GUT scale;(v) satisfy all the above constraints, although it is not easy for the lightest neutralino, as the only dark matter candidate, to get enough relic density. Several ways to increase relic density are discussed.  相似文献   

15.
This note summarizes many detailed physics studies done by the ATLAS and CMS Collaborations for the LHC, concentrating on processes involving the production of high mass states. These studies show that the LHC should be able to elucidate the mechanism of electroweak symmetry breaking and to study a variety of other topics related to physics at the TeV scale. In particular, a Higgs boson with couplings given by the Standard Model is observable in several channels over the full range of allowed masses. Its mass and some of its couplings will be determined. If supersymmetry is relevant to electroweak interactions, it will be discovered and the properties of many supersymmetric particles elucidated. Other new physics, such as the existence of massive gauge bosons and extra dimensions can be searched for extending existing limits by an order of magnitude or more.  相似文献   

16.
We point out that the diphoton excess at about 750 GeV recently discovered by the LHC experiments can be explained within supersymmetric models with low scale supersymmetry breaking with sgoldstino as a natural candidate. We discuss phenomenological consequences of this scenario describing possible signatures to test this hypothesis.  相似文献   

17.
In the context of supersymmetric grand unified theories with soft breaking terms arising at the Planck scale, it is generally possible to link flavor changing neutral current and CP violating processes occurring in the leptonic and hadronic sectors. We study the correlation between flavor changing squark and slepton mass insertions in models à la SU(5). We show that the constraints coming from lepton flavor violation exhibit a strong impact on CP-violating B decays.  相似文献   

18.
We propose a novel supersymmetric unified scenario of the triplet seesaw mechanism where the exchange of the heavy triplets generates both neutrino masses and soft supersymmetry breaking terms. Our framework is very predictive since it relates neutrino mass parameters, lepton-flavor-violation in the slepton sector, sparticle and Higgs spectra, and electroweak symmetry breakdown. The phenomenological viability and experimental signatures in lepton flavor-violating processes are discussed.  相似文献   

19.
《Comptes Rendus Physique》2015,16(4):394-406
With the discovery of the Higgs boson by the LHC in 2012, a new era started in which we have direct experimental information on the physics behind the breaking of the electroweak (EW) symmetry. This breaking plays a fundamental role in our understanding of particle physics and sits at the high-energy frontier beyond which we expect new physics that supersedes the Standard Model (SM). In this review we summarize what we have learned so far from LHC data in this respect. In the absence of new particles having been discovered, we discuss how the scrutiny of the properties of the Higgs boson (in search for deviations from SM expectations) is crucial as it can point the way for physics beyond the SM. We also emphasize how the value of the Higgs mass could have far-reaching implications for the stability of the EW vacuum if there is no new physics up to extremely large energies.  相似文献   

20.
The history concerning an experimental verification of the standard model of particle physics is reviewed with special emphasis on results from experiments using the highest-energy particle colliders, namely, PETRA, LEP and LHC. This article covers physics subjects from discovering the gluon and precise measurements at LEP, to discovering the Higgs boson. It also covers some searches for physics beyond the standard model, particularly supersymmetry, as well as recent developments of some particle detectors that were used in those experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号