首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The top quark is the heaviest elementary particle observed to date. Its large mass of about 173 GeV/c2 makes the top quark act differently than other elementary fermions, as it decays before it hadronises, passing its spin information on to its decay products. In addition, the top quark plays an important role in higher order loop corrections to standard model processes, which makes the top-quark mass a crucial parameter for precision tests of the electroweak theory. The top quark is also a powerful probe for new phenomena beyond the standard model.During the time of discovery at the Tevatron in 1995 only a few properties of the top quark could be measured. In recent years, since the start of Tevatron Run II, the field of top-quark physics has changed and entered a precision era. This report summarises the latest measurements and studies of top-quark properties and gives prospects for future measurements at the Large Hadron Collider (LHC).  相似文献   

2.
YUJI TAKEUCHI 《Pramana》2012,79(4):659-673
Since the top quark was discovered at Tevatron in 1995, many top quark properties have been measured. However, the top quark is still interesting due to unique features which originate from the extremely heavy mass, and providing various test grounds on the Standard Model as well as searches for a new physics. Though the measurements of the top quark had been performed only at Tevatron so far, LHC is now ready for measurements with more top quarks than Tevatron. In this article, recent measurements of top quark properties from Tevatron (CDF and D?) as well as LHC (ATLAS and CMS) are presented.  相似文献   

3.
I discuss threshold resummation at NNLL accuracy in the standard moment-space approach in perturbative QCD for top-pair and single-top production. For top quark pair production I present new approximate NNLO results for the total cross section and for the top quark transverse momentum and rapidity distributions at 8 TeV LHC energy. I discuss the accuracy of the soft-gluon approximation and show that the NLO and NNLO approximate results from resummation are practically indistinguishable from exact NLO and partial NNLO results. For single top production I present new approximate NNLO results for the total cross sections in all three channels at the LHC and also for the top quark transverse momentum distributions in t-channel production and in top-quark associated production with a W boson. For both \(t\bar t\) and single-top production the agreement of theoretical results with LHC and Tevatron data is excellent.  相似文献   

4.
The top quark forward-backward asymmetry measured at the Tevatron collider shows a large deviation from standard model expectations. Among possible interpretations, a nonuniversal Z' model is of particular interest as it naturally predicts a top quark in the forward region of large rapidity. To reproduce the size of the asymmetry, the couplings of the Z' to standard model quarks must be large, inevitably leading to copious production of same-sign top quark pairs at the energies of the Large Hadron Collider (LHC). We explore the discovery potential for tt and ttj production in early LHC experiments at 7-8 TeV and conclude that if no tt signal is observed with 1 fb?1 of integrated luminosity, then a nonuniversal Z' alone cannot explain the Tevatron forward-backward asymmetry.  相似文献   

5.
《Nuclear Physics B》1995,454(3):506-526
The semileptonic decay of the top quark tbW+bl+νl is analyzed in the rest system of the W. The forward-backward asymmetry of the lepton l+ with respect to the heavy quark direction is defined and computed. It is argued that this observable will be an ideal tool to study top quark properties at Tevatron and LHC. Higher order QCD corrections are calculated and their structure is elucidated in some detail.  相似文献   

6.
The Higgs boson search has shifted from LEP2 to the Tevatron and will subsequently move to the LHC. The current limits from the Tevatron and the prospective sensitivities at the LHC are often interpreted in specific MSSM scenarios. For heavy Higgs boson production and subsequent decay into or τ+τ, the present Tevatron data allow one to set limits in the MA–tan β plane for small MA and large tan β values. Similar channels have been explored for the LHC, where the discovery reach extends to higher values of MA and smaller tan β. Searches for MSSM charged Higgs bosons, produced in top decays or in association with top quarks, have also been investigated at the Tevatron and the LHC. We analyze the current Tevatron limits and prospective LHC sensitivities. We discuss how robust they are with respect to variations of the other MSSM parameters and possible improvements of the theoretical predictions for Higgs boson production and decay. It is shown that the inclusion of supersymmetric radiative corrections to the production cross sections and decay widths leads to important modifications of the present limits on the MSSM parameter space. The impact on the region where only the lightest MSSM Higgs boson can be detected at the LHC is also analyzed. We propose to extend the existing benchmark scenarios by including additional values of the higgsino mass parameter μ. This affects only slightly the search channels for a SM-like Higgs boson, while having a major impact on the searches for non-standard MSSM Higgs bosons.  相似文献   

7.
We study the phenomenology of same sign top pair production at the LHC in a model-independent way. The complete set of dimension six operators involving two top (or anti-top) quarks is introduced and the connection with all possible t- or s-channel heavy particle exchanges is established. Only in the former case, same and opposite sign top pair production can be related. We find that while current Tevatron data disfavor t-channel models, other production mechanisms are viable and can be tested at the LHC.  相似文献   

8.
We study the possibility of production of same sign top quark pairs at the LHC as a direct probe of flavor changing neutral current (FCNC) processes in the tqg vertices. In particular, the LHC potential to probe the flavor violating parameter κ/Λ is investigated with 5, 10, 15, and 20 fb?1 of integrated luminosity of data of 7 and 8 TeV collisions. We find that the LHC can probe it down to 0.13 TeV?1 via double top production process. Also, we examine the effects of variation of factorization scale and different parton distribution functions on the total cross section of same sign top quark pair at the LHC. The results could be a valid starting point for a more detailed experimental study.  相似文献   

9.
In the framework of topcolor-assisted technicolor (TC2) theory, we study a flavor changing single top quarkproduction process pp(pp) →Ⅱ0t → tc(tc) at upgraded Tevatron and LHC. The results show that with the flavor changingcoupling of neutral toppion to top and charm quark, toppion provides a large te-channel resonance effect. The signal ofsingle top production could be detected at LHC. Otherwise, the narrow peak in the invariant mass distribution could beclearly detected both at upgraded Tevatron and LHC. Therefore, such single top production process provides a uniqueway to test TC2 model via the detection of tc-channel neutral toppion contribution.  相似文献   

10.
Is Vtb≃1?     
The strongest constraint on Vtb presently comes from the 3×3 unitarity of the CKM matrix, which fixes Vtb to be very close to one. If unitarity is relaxed, current information from top production at Tevatron still leaves open the possibility that Vtb is sizably smaller than one. In minimal extensions of the standard model with extra heavy quarks, the unitarity constraints are much weaker, and the EW precision parameters entail the strongest bounds on Vtb. We discuss the experimental perspectives of discovering and identifying such new physics models at the Tevatron and the LHC, through a precise measurement of Vtb from the single top cross sections and by the study of processes where the extra heavy quarks are produced.  相似文献   

11.
鲁公儒  李祥  李培英 《物理学报》2008,57(2):778-783
在LHC上,最小超对称标准模型中R-宇称破缺相互作用使LHC上tt对的产生有两种过程,一种是交换slepton粒子的t道的dRdRtLtL过程,一种是交换squark粒子的u道的dRdRtRt 关键词: 最小超对称标准模型 R-宇称破缺相互作用 top夸克极化  相似文献   

12.
We present a detailed study of the anomalous top quark production with subsequent decay at the LHC induced by model-independent flavor-changing neutral-current couplings, incorporating the complete next-to-leading order QCD effects. Our results show that, taking into account the current limits from the Tevatron, the LHC with √s=7 TeV may discover the anomalous coupling at 5σ level for a very low integrated luminosity of 61 pb?1. The discovery potentials for the anomalous couplings at the LHC are examined in detail. We also discuss the possibility of using the charge ratio to distinguish the tug and tcg couplings.  相似文献   

13.
Chromomagnetic and chromoelectric dipole interactions of the top quark are studied in a model-independent framework. Limits are set on the scale of new physics that might lead to such contributions using latest Tevatron measurements of the t[`(t)]t{\bar t} cross-section. It is demonstrated that the invariant mass distribution is a sensitive probe. Prospects at the LHC are examined. It is shown that, for unitarized amplitudes, an increase in the LHC energy is of little importance, while the accumulation of luminosity plays a crucial role.  相似文献   

14.
We calculate the Yukawa corrections of order to charged Higgs boson production in association with a top quark at the Tevatron and the LHC. The corrections are not very sensitive to the mass of the charged Higgs boson and can exceed for low values of , where the contribution of the top quark is large, and high values of where the contribution of the bottom quark becomes large. These Yukawa corrections could be significant for charged Higgs boson searches based on this production process, particularly at the LHC where the cross section is relatively large. Received: 12 October 1999 / Revised version: 3 December 1999 / Published online: 6 April 2000  相似文献   

15.
The history of the detection of the heaviest elementary particle, the top quark, at the Tevatron accelerator using the CDF detector is presented. The basic channels of detecting the top quark and the methods of determining its mass are described. The importance and the strategy of measuring the top quark mass in various channels of the \(\mathop {tt}\limits^ - \)-pair decay at the Large Hadron Collider (LHC) with a cm energy of 14 TeV, an operation which is expected to begin in 2007, is discussed. The investigations into the physics of the top quark at the earliest stage of the LHC operation are described.  相似文献   

16.
The top quark was discovered at the CDF and D0 experiments in 1995. As the partner of the bottom quark its properties within the Standard Model are fully defined. Only the mass is a free parameter. The measurement of the top quark mass and the verification of the expected properties have been an important topic of experimental top quark physics since. In this review the recent results on top quark properties obtained by the Tevatron experiments CDF and D0 are summarised. At the advent of the LHC special emphasis is given to the basic measurement methods and the dominating systematic uncertainties.  相似文献   

17.
In this review we do not try to cover all the aspects of physics besnd tile standard model (BSM), instead our latest understanding on tile BSM will be presented: i) Tile Higgs sector is likely related to BSM, which can be confirmed at current running large hadron collider (LHC) or tile fllture eolliders. Furthermore we pointed out that spontaneous CP violation can be closely related to the lightness of the Higgs boson, ii) Top quark forward-backward asymmetry, which was mea.sured by Tewttron, might be the sign of BSM.2; proposed a new color-octet particle Zcr to account fi)r the observation and Z can be fllrther studied at the LHC. iii) If dark matter (DM) is utilized to accommodate astrophysical obserwtions, it ought to be observed at the high energy LttC and DM produced at colliders should be tile slnoking gun signal, iv) Lithium puzzle might also be the sign of the BSM. We briefly review tile newly proposed solution to Lithium puzzle, i.e.. the existonce of non-thermal component during the big bang nuclei-synthesis (BBN). The possible origins of the non-thermal coinponent can be dark matter or the new accelerating mechanism of normal particles.  相似文献   

18.
The top quark, discovered at the FERMILAB TEVATRON collider in 1995, is the heaviest known elementary particle. Today, ten years later, still relatively little is known about its properties. The strong and weak interactions of the top quark are not nearly as well studied as those of the other quarks and leptons. The strong interaction is most directly measured in top quark pair production. The weak interaction is measured in top quark decay and single top quark production, which remains thus far unobserved. The large top-quark mass of about 175 GeV/c2 suggests that it may play a special role in nature. It behaves differently from all other quarks due to its large mass and its correspondingly short lifetime. The top quark decays before it hadronises, passing its spin information on to its decay products. Therefore, it is possible to measure observables that depend on the top quark spin, providing a unique environment for tests of the Standard Model and for searches for physics beyond the Standard Model. This report summarises the latest measurements and studies of top quark properties and rare decays from the TEVATRON in Run II. With more than 1 fb-1 of luminosity delivered to each experiment, CDF and DO, top quark physics at the TEVATRON is at a turning point from first studies to precision measurements with sensitivity to new physics. An outlook onto top quark physics at the Large Hadron Collider (LHC) at CERN, planned to begin operation in the year 2007, is also given.  相似文献   

19.
The top quark is the heaviest particle to date discovered, with a mass close to the electroweak symmetry breaking scale. It is expected that the top quark would be sensitive to the new physics at the TeV scale. One of the most important aspects of the top quark physics can be the investigation of the possible anomalous couplings. Here, we study the top quark flavor changing neutral current (FCNC) couplings via the extra gauge boson Z′ at the Large Hadron Collider (LHC) and the Compact Linear Collider (CLIC) energies. We calculate the total cross sections for the signal and the corresponding Standard Model (SM) background processes. For an FCNC mixing parameter x=0.2 and the sequential Z′ mass of 1 TeV, we find the single top quark FCNC production cross sections 0.38(1.76) fb at the LHC with $\sqrt{s_{pp}}=7(14)$ TeV, respectively. For the resonance production of sequential Z′ boson and decays to single top quark at the Compact Linear Collider (CLIC) energies, including the initial state radiation and beamstrahlung effects, we find the cross section to be 27.96(0.91) fb at $\sqrt{s_{e^{+}e^{-}}}=1(3)$ TeV, respectively. We make the analysis to investigate the parameter space (mixing-mass) through various Z′ models. It is shown that the results benefit from the flavor tagging.  相似文献   

20.
The vast amount of flavor physics data available to date allows probing the presence of physics beyond the standard model through precision measurements of CP violating and CP conserving processes involving B, D, and K mesons. The information extracted from these measurements allows the characterization of physics beyond the standard model in a complementary way with respect to the direct searches at the Tevatron and the LHC. We review the status of the search for new physics with flavor-related observables. We discuss the status of the unitarity triangle analysis beyond the standard model: the inclusion of the recent measurements of Bs decays from the Tevatron experiments point to a discrepancy from the standard model expectation. In addition, we discuss the impact of O(ΛQCD/mb) corrections to the perturbative calculation of charmless hadronic B decays. These corrections can explain the puzzling values of direct CP asymmetries in BKπ decays within the standard model. These corrections cannot explain values of sin2β lower than the standard model value, as observed in bs penguin decays. We conclude with the perspectives of the next generation of flavor-physics experiments, the precision they can reach and their phenomenological impact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号