首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 340 毫秒
1.
This review provides a survey of lithography techniques and the resist materials employed with these techniques. The first part focuses on the conventional lithography methods used to fabricate complex micro- and nano-structured surfaces. In the second part, emphasis is placed on patterning with unconventional lithography techniques such as printing, molding, and embossing, and on their development into viable, high-resolution patterning technologies.  相似文献   

2.
《先进技术聚合物》2018,29(6):1586-1602
Three‐dimensional printing (3DP) technologies, which are sets of powerful deposition methods employed to fabricate 3D objects with materials in the fields of material sciences and engineering, biomedical and biocompatible structural components, automotive, aviation, and polymers, among others, are currently rapidly developing manufacturing technologies. The methods have significant advantages, which include designing flexibility, enhanced geometrical freedom, low cost, and net shape manufacture, among others, over the traditional “subtractive” method. This review highlights the major 3D printing techniques, especially in the fields of advanced polymeric material fabrication and engineering, as well as the synergy in the incorporation of different types of polymeric materials and composites in a process that will lead to an enhancement of dimensional accuracy for 3D technologies. Furthermore, composite ink systems especially polymer‐based and hydrogel‐based in tissue engineering applications are also discussed.  相似文献   

3.
Polylactide (PLA), the biodegradable synthetic aliphatic polyester, has been studied extensively for a number of applications. With potential applications PLA represents its prospective utility in a number of growing technologies such as orthopedics, drug delivery, sutures, and scaffolds, and have further enhanced the interest of researchers in this novel area. Renewable resource generated monomers possess better mechanical properties and easy processability by conventional methods like thermoforming, injection, and blow molding with non-toxic degradation products, which have made it superior than the other conventional thermoplastics. In order to meet the different performance requirements, PLA can be synthesised by various methods using different catalysts. In this review a collection of more than 100 catalysts for the synthesis of PLA are mentioned, apart from this, efforts have been made to present an updated review on the various aspects of polylactide.  相似文献   

4.
作为一种由常规注射成型发展起来的聚合物加工技术,气体辅助注射成型具有节约原材料、缩短成型周期以及提高制品性能等优点,已得到广泛的应用.由于气辅成型过程是一个在刚、柔双重约束界面条件下进行的多相复杂体系的多次流动过程,因而其形态结构的形成、发展和演化要远比常规注塑成型复杂.然而在气辅成型的形态结构方面,国内外的研究一直以来开展得较少.近年来,作者在聚合物及其共混物、复合材料气辅成型制品的形态结构方面已开展了广泛的研究工作,本文对这些工作和一些重要结果作了总结,并简要分析了成型过程中剪切场对形态演化的影响,最后对该研究方向的发展趋势作了展望.  相似文献   

5.
One-dimensional coordination polymer nanostructures are an emerging class of nanoscale materials with many potential applications. Here, we report the first case of coordination polymer nanofibers assembled using microfluidic technologies. Unlike common synthetic procedures, this approach enables parallel synthesis with an unprecedented level of control over the coordination pathway and facilitates the formation of 1D coordination polymer assemblies at the nanometer length scale. Finally, these nanostructures, which are not easily constructed with traditional methods, can be used for various applications, for example as templates to grow and organize functional inorganic nanoparticles.  相似文献   

6.
Photopolymerization and photoprocessing are core technologies for molding and tuning polymer materials. However, they are incompatible with single materials owing to their contradictory photoreactivity. Herein, an acid-induced photocleavable crosslinker, a platinum–acetylide complex covered by permethylated cyclodextrins, enables the fabrication of photoprocessable materials via photopolymerization with N-(2-hydroxyethyl)acrylamide. The polymer networks are molded by 365 nm irradiation as well as softened and degraded by a cooperative reaction with HCl as an acidic additive under 365 nm UV light, or 470 nm visible light in the presence of a photosensitizer. Moreover, the crosslinker is applied to a photoadhesive triggered by 365 nm irradiation. The adhesion is detachable on-demand through acid-induced photodegradation with the same wavelength and intensity of irradiation. Thus, acid-induced photocleavage allows the integration of light-induced molding and processing under various lights of various wavelengths, opening up new strategies for polymer technologies.  相似文献   

7.
几种采用熔体注射成型实现聚合物自增强的方法   总被引:4,自引:0,他引:4  
对当前常用的几种注射自增强方法进行了归纳和总结介绍了高压注射法、拉伸流动法和剪切控制法等几种实现单向自增强的方法以及注射压制二步法、摆动注射法、旋转注射法和剪切控制法等实现双向自增强的方法。  相似文献   

8.
The aim of this review is to discuss the recent developments in thermoplastic starch blends. Starch has been considered as an excellent candidate to partially substitute synthetic polymer in packaging, agricultural mulch and other low-cost applications. Recently, the starch granules were plasticized using different plasticizers under heating and shearing, giving rise to a continues phase in the form of a viscous melt which can be processed using traditional plastic processing techniques, such as injection molding and extrusion. This kind of starch composites is called thermoplastic starch. Unfortunately, thermoplastic starch presents some drawbacks, such as low degradation temperatures, which make it difficult to process, poor mechanical properties and high water susceptibility. Much work has been carried out to overcome these drawbacks, including the combination of thermoplastic starch with other polymers, aiming at lowering the cost and enhancing the biodegradability of the final product.  相似文献   

9.
Polypyrrole is one of the most frequently studied conducting polymers, having high electrical conductivity and stability, suitable for multi-functionalised applications. Coatings of chemically synthesised polypyrrole applied onto various organic and inorganic materials, such as polymer particles and films, nanoparticles of metal oxides, clay minerals, and carbon nanotubes are reviewed in this paper. Its primary subject is the formation of new materials and their application in which chemical oxidative polymerisation of pyrrole was used. These combined materials are used in antistatic applications, such as anti-corrosion coating, radiation-shielding, but also as new categories of sensors, batteries, and components for organic electronics are created by coating substrates with conducting polymer layers or imprinting technologies.  相似文献   

10.
Geopolymers and geopolymeric materials   总被引:2,自引:0,他引:2  
Spectacular technological progress has been made in the last few years through the development of new materials such as ‘geopolymers’, and new techniques, such as ‘sol-gel’. New state-of-the-art materials designed with the help of geopolymerisation reactions are opening up new applications and procedures and transforming ideas that have been taken for granted in inorganic chemistry. High temperature techniques are no longer necessary to obtain materials which are ceramiclike in their structures and properties. These materials can polycondense just like organic polymers, at temperatures lower than 100 deg. C. This new generation of materials, whether used pure, with fillers or reinforced, is already finding applications in all fields of industry. Some examples:
  • pure: for storing toxic chemical or radioactive waste, etc.
  • filled: for the manufacture of special concretes, molds for molding thermoplastics, etc.
  • reinforced: for the manufacture of molds, tooling, in aluminum alloy foundries and metallurgy, etc.
  • These applications are to be found in the automobile and aerospace industries, non-ferrous foundries and metallurgy, civil engineering, plastics industries, etc.  相似文献   

    11.
    Understanding how polymers will process in such as extruders, injection molding machines, and dies can be met through academic-industry cooperation. With declining R&D budgets and globalization of businesses, this cooperation is extremely valuable for continuing fundamental research in polymer processing and fabrication technologies. This paper illustrates some examples and suggests how industry can best benefit from these programs  相似文献   

    12.
    In this review, we discuss a number of computational methods that have been developed or adapted for molecule classification and virtual screening (VS) of compound databases. In particular, we focus on approaches that are complementary to high-throughput screening (HTS). The discussion is limited to VS methods that operate at the small molecular level, which is often called ligand-based VS (LBVS), and does not take into account docking algorithms or other structure-based screening tools. We describe areas that greatly benefit from combining virtual and biological screening and discuss computational methods that are most suitable to contribute to the integration of screening technologies. Relevant approaches range from established methods such as clustering or similarity searching to techniques that have only recently been introduced for LBVS applications such as statistical methods or support vector machines. Finally, we discuss a number of representative applications at the interface between VS and HTS.  相似文献   

    13.
    单分散大粒径聚合物微球的合成及应用   总被引:23,自引:0,他引:23  
    单分散,大粒径聚合物微球是近20年来开发的一类球形高分子粒子,在标准计量、情报信息、化学化工、医学免疫及生物化学等许多领域里有着广阔的应用前景,其合成和应用在高分子科学领域里已成为人们致力于研究和开发的热门课题。  相似文献   

    14.
    银/聚合物纳米复合材料   总被引:2,自引:0,他引:2  
    银/聚合物纳米复合材料是一种典型的聚合物基复合材料, 其结构和性能依赖于合成方法,因此开发材料的优异性能必须以深入研究纳米材料的先进合成技术为前提。本文综述了纳米银粒子及其与聚合物形成的纳米复合材料的最新合成进展, 重点介绍了基于液相化学还原方法合成纳米银粒子的新方法, 如溶胶-凝胶法、沉淀法、微乳液法和离子液体法, 以及纳米银粒子的分散技术和原位法合成银/聚合物纳米复合材料的新技术, 并介绍了纳米银复合材料的电绝缘性、表面增强拉曼散射性能、抗菌性及其在生物医学等领域中的应用。  相似文献   

    15.
    静电纺丝技术是目前制备纳米纤维最重要的方法之一,以其制备的纤维具有直径可控、比表面积大、孔隙率高等优点,因而被广泛应用于过滤、催化、传感器及生物医学等众多领域.以静电纺丝纤维为模板可进一步构建多级结构的功能性聚合物纳米纤维复合材料,拓宽其应用范围.本文着重概述了近年来基于静电纺丝技术的简单共混型、核壳结构及多级结构的聚合物纳米纤维复合材料的制备、结构及性能,并展望了其应用研究前景.  相似文献   

    16.
    Extrusion is one of the most applied technologies for the processing of polymer nanocomposites for applications in automotive, electrical and packaging industrial sectors. These nanostructured materials have advantages in comparison to traditional polymer materials, so that properties like tensile strength and modulus, barrier and surface properties, electrical properties and flame retardancy will be improved. There is a need to control amount and dispersion of the nanofillers in the polymer matrix during melt processing and to control the influence of the processing conditions on the nanocomposite formation. For an adequate real time characterization it is necessary to measure directly in the extruder. Spectroscopic methods and Ultrasonic measurements are outstanding methods for this kind of in-line monitoring. This paper deals with the real time determination of the dispersion and the impact strength of polymer nanocomposites in the melt during extrusion by Ultrasonic measurements and NIR spectroscopy. These in-line measurements were correlated with off-line rheological measurements, transmission electron microscopy and mechanical test measurements by multivariate data analysis. The polymers used are polypropylene and polyamide 6. As nanofillers we used different modified layered silicates. We determined the degree of exfoliation as an indicator for the dispersion of the nanofiller in the polymer matrix for different layered silicates and at different process conditions.  相似文献   

    17.
    Polymer microfabrication technologies for microfluidic systems   总被引:4,自引:0,他引:4  
    Polymers have assumed the leading role as substrate materials for microfluidic devices in recent years. They offer a broad range of material parameters as well as material and surface chemical properties which enable microscopic design features that cannot be realised by any other class of materials. A similar range of fabrication technologies exist to generate microfluidic devices from these materials. This review will introduce the currently relevant microfabrication technologies such as replication methods like hot embossing, injection molding, microthermoforming and casting as well as photodefining methods like lithography and laser ablation for microfluidic systems and discuss academic and industrial considerations for their use. A section on back-end processing completes the overview.  相似文献   

    18.
    This paper reviews the recent developments in bioanalysis sample preparation techniques and gives an update on basic principles, theory, applications and possibilities for automation, and a comparative discussion on the advantages and limitation of each technique. Conventional liquid-liquid extraction (LLE), protein precipitation (PP) and solid-phase extraction (SPE) techniques are now been considered as methods of the past. The last decade has witnessed a rapid development of novel sample preparation techniques in bioanalysis. Developments in SPE techniques such as selective sorbents and in the overall approach to SPE, such as hybrid SPE and molecularly imprinted polymer SPE, have been addressed. Considerable literature has been published in the area of solid-phase micro-extraction and its different versions, e.g. stir bar sorptive extraction, and their application in the development of selective and sensitive bioanalytical methods. Techniques such as dispersive solid-phase extraction, disposable pipette extraction and micro-extraction by packed sorbent offer a variety of extraction phases and provide unique advantages to bioanalytical methods. On-line SPE utilizing column-switching techniques is rapidly gaining acceptance in bioanalytical applications. PP sample preparation techniques such as PP filter plates/tubes offer many advantages like removal of phospholipids and proteins in plasma/serum. Newer approaches to conventional LLE techniques (salting-out LLE) are also covered in this review article.  相似文献   

    19.
    张仟春  罗夏琳  李攻科  肖小华 《色谱》2015,33(9):904-909
    核苷、胺、氨基酸等极性小分子化合物是生物、食品、环境等领域重要的研究对象,但各种复杂基体中痕量极性小分子的分离分析需要高效的前处理介质和技术以及快速灵敏的分析方法。本文综述了硅胶材料、有机聚合物、炭材料和硼酸材料等样品前处理分离介质及反相液相色谱、亲水作用色谱等分析方法在复杂样品痕量极性小分子化合物分析中的应用,并展望了其发展趋势。  相似文献   

    20.
    Miniaturized extraction and separation media have been successfully developed from precisely controlled technologies. In this article, recent developments in these high performance analytical methods, such as miniaturized sample preparation methods and the coupling of these techniques with microscale separation systems, have been reviewed, along with some applications to environmental and biological analysis. The advantage of the miniaturization is not only for the environmental compatibility but also for the developments of the high performance analytical systems. Down-sizing also makes it possible to investigate and introduce various compounds and materials as novel media (such as tailor-made materials and devices) in separation science. As a typical example of the novel miniaturized sample preparation system, the applications of fibrous materials for microcolumn liquid-phase separation methods are described.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号