首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
LetG be an arbitrary domain in \(\bar C\) ,f a function meromorphic inG, $$M_f \mathop = \limits^{def} \mathop {\lim \sup }\limits_{G \mathrel\backepsilon z \to \partial G} \left| {f(z)} \right|< \infty ,$$ andR the sum of the principal parts in the Laurent expansions off with respect to all its poles inG. We set $$f_G (z) = R(z) - \alpha ,{\mathbf{ }}where{\mathbf{ }}\alpha = \mathop {\lim }\limits_{z \to \infty } (f(z) - R(z))$$ in case ∞?G, andα=0 in case ∞?G. It is proved that $$\left\| {f_G } \right\|_{C(\partial G)} \leqq 50(\deg f_G )M_f ,{\mathbf{ }}\left\| {f'_G } \right\|_{L_1 (\partial G)} \leqq 50(\deg f_G )V(\partial G)M_f ,$$ where $$V(\partial G) = \sup \left\{ {\left\| {r'} \right\|_{L_1 (\partial G)} :r(z) = a/(z - b),{\mathbf{ }}\left\| r \right\|_{G(\partial G)} \leqq 1} \right\}.$$   相似文献   

2.
Letf be an entire function (in Cn) of exponential type for whichf(x)=0(?(x)) on the real subspace \(\mathbb{R}^w (\phi \geqslant 1,{\mathbf{ }}\mathop {\lim }\limits_{\left| x \right| \to \infty } \phi (x) = \infty )\) and ?δ>0?Cδ>0 $$\left| {f(z)} \right| \leqslant C_\delta \exp \left\{ {h_s (y) + S\left| z \right|} \right\},z = x + iy$$ where h, (x)=sup〈3, x〉, S being a convex set in ?n. Then for any ?, ?>0, the functionf can be approximated with any degree of accuracy in the form p→ \(\mathop {\sup }\limits_{x \in \mathbb{R}^w } \frac{{\left| {P(x)} \right|}}{{\varphi (x)}}\) by linear combinations of functions x→expi〈λx〉 with frequenciesX belonging to an ?-neighborhood of the set S.  相似文献   

3.
Пусть? — возрастающа я непрерывная фцнкци я на [0,π],?(0)=0 и $$\mathop \smallint \limits_0^h \frac{{\varphi \left( t \right)}}{t}dt = O\left( {\varphi \left( h \right)} \right){\text{ }}\left( {h \to 0} \right).$$ Положим $$\psi \left( h \right) = h\mathop \smallint \limits_h^\pi \frac{{\varphi \left( t \right)}}{{t^2 }}dt \left( {h \in (0, \pi ]} \right).$$ Доказывается следую щая теорема.Пусть f∈ С[?π, π], ω(f, δ)=О(?(δ))) и $$\mathop {\lim }\limits_{h \to 0} \frac{1}{{\varphi \left( {\left| h \right|} \right)}}\left| {f\left( {x + h} \right) - f\left( x \right)} \right| = 0$$ для x∈E?[?π, π], ¦E¦>0. Тогда д ля сопряженной функц ии f почти всюду на E выполн яется соотношение $$\mathop {\lim }\limits_{h \to 0} \frac{1}{{\psi \left( {\left| h \right|} \right)}}\left| {\tilde f\left( {x + h} \right) - \tilde f\left( x \right)} \right| = 0.$$ Из этой теоремы вытек ает положительное ре шение одной задачи Л. Лейндлера.  相似文献   

4.
Ω-theorems for some automorphic L-functions and, in particular, for the Rankin?Selberg L-function L(s, f × f) are considered. For example, as t tends to infinity, $$ \log \left| {L\left( {\frac{1}{2}+it,f\times f} \right)} \right|={\varOmega_{+}}\left( {{{{\left( {\frac{{\log t}}{{\log\;\log t}}} \right)}}^{1/2 }}} \right) $$ and $$ \log \left| {L\left( {{\sigma_0}+it,f\times f} \right)} \right|={\varOmega_{+}}\left( {{{{\left( {\frac{{\log t}}{{\log\;\log t}}} \right)}}^{{1-{\sigma_0}}}}} \right) $$ For a fixed σ 0 $ \left( {\frac{1}{2},1} \right) $ . Bibliography: 15 titles.  相似文献   

5.
LetH(α) denote the class of regular functionsf(z) normalized so thatf(0)=0 andf′(0)=1 and satisfying in the unit discE the condition $$\operatorname{Re} \left\{ {(1 - \alpha )f'(z) + \alpha (1 + zf''(z)/f'(z))} \right\} > 0$$ for fixed α. It is known thatH(0) is a particular class NW of close-to-convex univalent functions. The authors show the following results:Theorem 1. Letf(z)H(α). Thenf(z)∈NW if α≤0 andzE.Theorem 2. Letf(z)∈NW. Thenf(z)H(α) in |z|=r<r α where i) \(r_\alpha = (1 + \sqrt {2\alpha } )^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}}\) , α≥0 and ii) \(r_\alpha = \sqrt {\frac{{1 - \alpha - \sqrt {\alpha (\alpha - 1)} }}{{1 - \alpha }}}\) , α<0. All results are sharp.Theorem 3. Iff(z)=z+a 2 z 2+a 3 z 3+... is inH(α) and if μ is an arbitrary complex number, then $$\left| {1 + \alpha } \right|\left| {a_3 - \mu a_2^2 } \right| \leqslant ({2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-\nulldelimiterspace} 3})\max \left[ {1,\left| {1 + 2\alpha - {3 \mathord{\left/ {\vphantom {3 {2\mu }}} \right. \kern-\nulldelimiterspace} {2\mu }}(1 + \alpha )} \right|} \right].$$ .  相似文献   

6.
Estimates are given for the measure of a section of an arbitrary straight line of the set $$E_\delta = \left\{ {z:\left| {P' {{\left( z \right)} \mathord{\left/ {\vphantom {{\left( z \right)} {\left( {nP \left( z \right)} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {nP \left( z \right)} \right)}} \leqslant \delta } \right|} \right\} \left( {\delta > 0} \right)$$ where P (z) is a polynomial of degree n. THEOREM. Suppose P (x) = (x ? x1) ... (x ? xn) is a polynomial with real zeros. Then, for any δ > 0, on any intervala ?x ?b, containing all of the xk (k=1, 2, ..., n), outside an exceptional set Eδ?[a,b] such that $$mes E_\delta \leqslant \left( {\sqrt {1 + \delta ^2 \left( {b - a} \right)^2 } - 1} \right)/\delta $$ , we have the inequality $$\left| {P' {{\left( x \right)} \mathord{\left/ {\vphantom {{\left( x \right)} {\left( {nP \left( x \right)} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {nP \left( x \right)} \right)}}} \right| > \delta $$ . A similar estimate is given for polynomials whose roots lie either in Imz ? 0 or in Imz ? 0.  相似文献   

7.
In this paper, we use a simpler argument and solve the following more general function equation: $$\left| {f\left( {z + w} \right)} \right| + \left| {g\left( {z - w} \right)} \right| = \left| {h\left( {z + \bar w} \right)} \right| + \left| {k\left( {z - \bar w} \right)} \right|$$ where f, g, h, k are unknown entire functions and z, w are complex variables.  相似文献   

8.
It is the aim of this paper to introduce two new notions of discrepancy. They are defined by the formulas $$\begin{gathered} \Delta _N^r \left( {\omega ;f} \right) = \mathop {\sup }\limits_{\left| z \right| = r} \left| {\left( {{1 \mathord{\left/ {\vphantom {1 N}} \right. \kern-\nulldelimiterspace} N}} \right)\sum\limits_{n = 1}^N {f\left( {z e^2 \pi i\omega \left( n \right)} \right)} - f\left( 0 \right)} \right|, and \hfill \\ \delta _N^r \left( {\omega ;f} \right) = \mathop {\sup }\limits_{\left| z \right| = r} \left| {\left( {{1 \mathord{\left/ {\vphantom {1 N}} \right. \kern-\nulldelimiterspace} N}} \right)\sum\limits_{n = 1}^N {f\left( {z \omega \left( n \right)} \right)} \cdot z - \int\limits_0^z {f\left( \zeta \right)d\zeta } } \right|, \hfill \\ \end{gathered} $$ wheref is a holomorphic function defined in the unit disc withf (k) (0)≠0 for allk∈?,r<1 is a positive number, and ω is a sequence in [0, 1]. The first of these discrepancies can be generalized for multidimensional sequences. ω is uniform distributed if and only if lim N→∞ Δ N r (ω;f)=0 resp. lim N→∞δ N r (ω;f)=0. These results are proved in a quantitative way by estimating the classical discrepancyD N (ω) by means ofΔ N r (ω;f) and δ N r (ω;f): $$\begin{gathered} \Delta _N^r \left( {\omega ;f} \right) \ll D_N \left( \omega \right) \ll \Phi \left( {\Delta _N^r \left( {\omega ;f} \right)} \right), \hfill \\ \delta _N^r \left( {\omega ;f} \right) \ll D_N \left( \omega \right) \ll \Psi \left( {\delta _N^r \left( {\omega ;f} \right)} \right). \hfill \\ \end{gathered} $$ The functions Φ and Ψ only depend onf andr. These estimations are based on the inequalities ofKoksma-Hlawka andErdös-Turán.  相似文献   

9.
The paper is devoted to the study of the weak norms of the classical operators in the vector-valued setting.
  1. Let S, H denote the singular integral involution operator and the Hilbert transform on $L^p \left( {\mathbb{T}, \ell _\mathbb{C}^2 } \right)$ , respectively. Then for 1 ≤ p ≤ 2 and any f, $$\left\| {\mathcal{S}f} \right\|_{p,\infty } \leqslant \left( {\frac{1} {\pi }\int_{ - \infty }^\infty {\frac{{\left| {\tfrac{2} {\pi }\log \left| t \right|} \right|^p }} {{t^2 + 1}}dt} } \right)^{ - 1/p} \left\| f \right\|p,$$ $$\left\| {\mathcal{H}f} \right\|_{p,\infty } \leqslant \left( {\frac{1} {\pi }\int_{ - \infty }^\infty {\frac{{\left| {\tfrac{2} {\pi }\log \left| t \right|} \right|^p }} {{t^2 + 1}}dt} } \right)^{ - 1/p} \left\| f \right\|p.$$ Both inequalities are sharp.
  2. Let P + and P ? stand for the Riesz projection and the co-analytic projection on $L^p \left( {\mathbb{T}, \ell _\mathbb{C}^2 } \right)$ , respectively. Then for 1 ≤ p ≤ 2 and any f, $$\left\| {P + f} \right\|_{p,\infty } \leqslant \left\| f \right\|_p ,$$ $$\left\| {P - f} \right\|_{p,\infty } \leqslant \left\| f \right\|_p .$$ Both inequalities are sharp.
  3. We establish the sharp versions of the estimates above in the nonperiodic case.
The results are new even if the operators act on complex-valued functions. The proof rests on the construction of an appropriate plurisubharmonic function and probabilistic techniques.  相似文献   

10.
We consider weighted complex approximation problems of the form $$\mathop {\min }\limits_{p:p(a) = 1} \mathop {\min }\limits_{z \in \left[ { - 1,1} \right]} \left| {w(z)p(z)} \right|$$ withp ranging over all polynomials of degree ≤n anda purely imaginary. Recent results by Ruscheweyh and Freund forw(z) = 1 and \(w(z) = \sqrt {z + 1}\) are extended to more general weight functions. Moreover, the solution of a complex Zolotarev type problem is given.  相似文献   

11.
В статье даны полные д оказательства следу ющих утверждений. Пустьω — непрерывная неубывающая полуадд итивная функций на [0, ∞),ω(0)=0 и пусть M?[0, 1] — матрица узл ов интерполирования. Если $$\mathop {\lim sup}\limits_{n \to \infty } \omega \left( {\frac{1}{n}} \right)\log n > 0$$ то существует точкаx 0∈[0,1] и функцияf ∈ С[0,1] таки е, чтоω(f, δ)=О(ω(δ)), для которой $$\mathop {\lim sup}\limits_{n \to \infty } |L_n (\mathfrak{M},f,x_0 ) - f(x_0 )| > 0$$ Если же $$\mathop {\lim sup}\limits_{n \to \infty } \omega \left( {\frac{1}{n}} \right)\log n = \infty$$ , то существуют множес твоE второй категори и и функцияf ∈ С[0,1],ω(f, δ)=o(ω(δ)) та кие, что для всехxE $$\mathop {\lim sup}\limits_{n \to \infty } |L_n (\mathfrak{M},f,x)| = \infty$$ . Исправлена погрешно сть, допущенная автор ом в [5], и отмеченная в работе П. Вертеши [9].  相似文献   

12.
This paper is a continuation of [3]. Suppose f∈Hp(T), 0σ r σ f,σ=1/p?1. When p=1, it is just the partial Fourier sums Skf. In this paper we establish the sharp estimations on the degree of approximation: $$\left\{ { - \frac{1}{{logR}}\int\limits_1^R {\left\| {\sigma _r^\delta f - f} \right\|_{H^p (T)}^p \frac{{dr}}{r}} } \right\}^{1/p} \leqq C{\mathbf{ }}{}_p\omega \left( {f,{\mathbf{ }}( - \frac{1}{{logR}})^{1/p} } \right)_{H^p (T)} ,0< p< 1,$$ and \(\frac{1}{{\log L}}\sum\limits_{k - 1}^L {\frac{{\left\| {S_k f - f} \right\|_H 1_{(T)} }}{k} \leqq Cp\omega (f; - \frac{1}{{\log L}})_H 1_{(T)} } \) Where $$\omega (f,{\mathbf{ }}h)_{H^p (T)} \begin{array}{*{20}c} { = Sup} \\ {0 \leqq \left| u \right| \leqq h} \\ \end{array} \left\| {f( \cdot + u) - f( \cdot )} \right\|_{H^p (T).} $$ .  相似文献   

13.
For the coefficients bn of an odd function \(f(z) = z + \sum\nolimits_{k = 1}^\infty {{}^bk^{z^{2k + 1} } } \) , regular in the unit disk, we obtain the estimate $$|b_n | \leqslant \frac{1}{{\sqrt 2 }}\sqrt {1 + |b_1 |^2 } \exp \frac{1}{2}\left( {\delta + \frac{1}{2}|b_1 |^2 } \right),where \delta = 0.312,$$ (1) from which it follows that ¦bn¦≤1, if ¦b1¦≤0.524. It follows from (1) that the coefficients cn, n = 3, 4,..., of a regular function \(f(2) = z + \sum\nolimits_{k = 2}^\infty {{}^ck^{z^k } } \) , univalent in the unit desk, satisfy $$|c_n | \leqslant \frac{1}{2}\left( {1 + \frac{{|c_2 |^2 }}{4}} \right)n\exp \left( {\delta + \frac{{|c_2 |^2 }}{8}} \right),where \delta = 0.312,$$ in particular, ¦cn¦≤n, if ¦c2¦≤1.046.  相似文献   

14.
We study the rate of uniform approximation by Nörlund means of the rectangular partial sums of double Fourier series of continuous functionsf(x, y), 2π-periodic in each variable. The results are given in terms of the modulus of symmetric smoothness defined by $$\begin{gathered} \omega _2 \left( {f,\delta _1 ,\delta _2 } \right) = \mathop {\sup }\limits_{x,y} \mathop {\sup }\limits_{\left| u \right| \leqslant \delta _1 ,\left| v \right| \leqslant \delta _2 } \left| {f\left( {x + u,y + v} \right)} \right. + f\left( {x + u,y - v} \right) + f\left( {x - u,y + v} \right) \hfill \\ + \left. {f\left( {x - u,y - v} \right) + 4f\left( {x,y} \right)} \right| for \delta _1 ,\delta _2 \geqslant 0. \hfill \\ \end{gathered} $$ As a special case we obtain the rate of uniform approximation to functionsf(x,y) in Lip({α, β}), the Lipschitz class, and inZ({α, β}), the Zygmund class of ordersα andβ, 0<α,β ≤ l, as well as the rate of uniform approximation to the conjugate functions \(\tilde f^{(1,0)} (x,y), \tilde f^{(0,1)} (x,y)\) and \(\tilde f^{(1,1)} (x,y)\) .  相似文献   

15.
Пустьf 2π-периодическ ая суммируемая функц ия, as k (x) еë сумма Фурье порядк аk. В связи с известным ре зультатом Зигмунда о сильной суммируемости мы уст анавливаем, что если λn→∞, то сущес твует такая функцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _{2n} } } \right\}^{1/\lambda _{2n} } = \infty .$$ Отсюда, в частности, вы текает, что если λn?∞, т о существует такая фун кцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } } \right\}^{1/\lambda _n } = \infty .$$ Пусть, далее, ω-модуль н епрерывности и $$H^\omega = \{ f:\parallel f(x + h) - f(x)\parallel _c \leqq K_f \omega (h)\} .$$ . Мы доказываем, что есл и λ n ?∞, то необходимым и достаточным условие м для того, чтобы для всехfH ω выполнялос ь соотношение $$\mathop {\lim }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _n } } \right\}^{1/\lambda _n } = 0(x \in [0;2\pi ])$$ является условие $$\omega \left( {\frac{1}{n}} \right) = o\left( {\frac{1}{{\log n}} + \frac{1}{{\lambda _n }}} \right).$$ Это же условие необхо димо и достаточно для того, чтобы выполнялось соотнош ение $$\mathop {\lim }\limits_{n \to \infty } \frac{1}{{n + 1}}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } = 0(f \in H^\omega ,x \in [0;2\pi ]).$$   相似文献   

16.
For a linear differential equation of the type (1) $$\frac{{dx}}{{dt}} = A_0 x(t) + A_1 x(t - \Delta _1 ) + ... + A_n x(t - \Delta _n )$$ we establish the followingTHEOREM. If $$\overline {\left| {z_1 } \right| = ...\underline{\underline \cup } \left| z \right|_n = 1\sigma \left( {A_0 + \sum\nolimits_{k = 1}^n {z_k A_k } } \right)} \subset \left\{ {\lambda :\operatorname{Re} \lambda< 0} \right\}$$ then system (1) is absolutely asymptotically stable.  相似文献   

17.
The resutls of this paper show that the structure of sets mentioned in the title is not trivial. For example, it is shown that there exist countalbe sets of uniqueness for logarithmic potential, i.e., closed countable subsets E of the unit circle $\mathbb{T}$ such that $$f \in C(\mathbb{T}),f|_E = 0,U^f |_E = 0 \Rightarrow f \equiv 0.$$ Here $U^f (z) = \tfrac{1}{\pi }\int\limits_0^{2\pi } {f(e^{i\theta } )\log \tfrac{1}{{\left| {z - e^{i\theta } } \right|}}d\theta } $ . On the other hand, it is shown that every countable porous closed subset of $\mathbb{T}$ is a nonuniqueness set. Bibliography: 9 titles.  相似文献   

18.
19.
Изучается ограничен ность псевдодиффере нциальных операторов на \(L^2 (R^n )\) и на пр остранствах Харди в \(R^n \) . Пусть \(D_k = \{ \xi \in R^n :2^{k - 1} \leqq \left| \xi \right|< 2^k \} , k = 1,2,3, \ldots ,\) и \(D_0 = \{ \xi \in R^n :\left| \xi \right|< 1\} \) . Псевдодиффер енциальный операторP с символом p определяется соотно шением $$Pf(x) = \int\limits_{R^n } {e^{ix \cdot \xi } p(x,\xi )\hat f(\xi )d\xi ,x \in R^n .} $$ Будем говорить, что p пр инадлежит классу \(\bar S_{\varrho ,} {}_\delta (M,N), 0 \leqq \delta ,\varrho \leqq 1\) , ес ли $$\left| {D_x^a p(x,\xi )} \right| \leqq C_a (1 + \left| \xi \right|)^{\delta \left| a \right|} , x,\xi \in R^n ,\left| a \right| \leqq M,$$ и $$\int\limits_{D_k } {\left| {D_x^a D_\xi ^\beta p(x,\xi )} \right|d\xi \leqq C_{a\beta } 2^{kn} 2^{k(\delta |a| - \varrho |\beta |)} , x} \in R^n , k = 0,1,2, \ldots ;|a| \leqq M, |\beta | \leqq N.$$ Изучаются условия, ко торым должны удовлет ворять ?. δ,M иN, чтобы для каждого символа \(p \in \bar S_\varrho , {}_\delta (M,N)\) соответствующий оп ераторP был ограниче н на \(L^2 (R^n )\) . Далее, пусть \(p \in S_\varrho , {}_\delta \) , если дл я всех мультииндексо в а и β выполнено условие $$|D_x^a D_\xi ^\beta p(x,\xi )| \leqq C_{a\beta } (1 + |\xi |)^{\delta |\alpha | - \varrho |\beta |} , x,\xi \in R^n .$$ Доказывается, что при 0≦δ<1 операторP отображ ает пространство Харди \(H^p (R^n )\) в локальное пространство Харди ? p , если символp принадл ежит классуS 1, δ.  相似文献   

20.
Let A N to be N points in the unit cube in dimension d, and consider the discrepancy function $$ D_N (\vec x): = \sharp \left( {\mathcal{A}_N \cap \left[ {\vec 0,\vec x} \right)} \right) - N\left| {\left[ {\vec 0,\vec x} \right)} \right| $$ Here, $$ \vec x = \left( {\vec x,...,x_d } \right),\left[ {0,\vec x} \right) = \prod\limits_{t = 1}^d {\left[ {0,x_t } \right),} $$ and $ \left| {\left[ {0,\vec x} \right)} \right| $ denotes the Lebesgue measure of the rectangle. We show that necessarily $$ \left\| {D_N } \right\|_{L^1 (log L)^{(d - 2)/2} } \gtrsim \left( {log N} \right)^{\left( {d - 1} \right)/2} . $$ In dimension d = 2, the ‘log L’ term has power zero, which corresponds to a Theorem due to [11]. The power on log L in dimension d ≥ 3 appears to be new, and supports a well-known conjecture on the L 1 norm of D N . Comments on the discrepancy function in Hardy space also support the conjecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号