首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider the time-dependent Schrödinger-Hartree equation (1) $$iu_t + \Delta u = \left( {\frac{1}{r}*|u|^2 } \right)u + \lambda \frac{u}{r},(t, x) \in \mathbb{R} \times \mathbb{R}^3 ,$$ (2) $$u(0,x) = \phi (x) \in \Sigma ^{2,2} ,x \in \mathbb{R}^3 ,$$ where λ≧0 and \(\Sigma ^{2,2} = \{ g \in L^2 ;\parallel g\parallel _{\Sigma ^{2,2} }^2 = \sum\limits_{|a| \leqq 2} {\parallel D^a g\parallel _2^2 + \sum\limits_{|\beta | \leqq 2} {\parallel x^\beta g\parallel _2^2< \infty } } \} \) . We show that there exists a unique global solutionu of (1) and (2) such that $$u \in C(\mathbb{R};H^{1,2} ) \cap L^\infty (\mathbb{R};H^{2,2} ) \cap L_{loc}^\infty (\mathbb{R};\Sigma ^{2,2} )$$ with $$u \in L^\infty (\mathbb{R};L^2 ).$$ Furthermore, we show thatu has the following estimates: $$\parallel u(t)\parallel _{2,2} \leqq C,a.c. t \in \mathbb{R},$$ and $$\parallel u(t)\parallel _\infty \leqq C(1 + |t|)^{ - 1/2} ,a.e. t \in \mathbb{R}.$$   相似文献   

2.
By applying the Feynman-Hellmann theorem to \(q\bar q\) systems we find the following bounds on quark mass differences from the spectrum ofall quarkonium states $$\begin{gathered} 0.27 \leqq m_s - m_u \leqq 0.45GeV \hfill \\ 1.23 \leqq m_c - m_s \leqq 1.46GeV \hfill \\ 3.30 \leqq m_b - m_c \leqq 3.55GeV. \hfill \\ \end{gathered}$$ As best values we derive $$\begin{gathered} m_u = m_d = 0.31GeV,m_s = 0.62GeV, \hfill \\ m_c = 1.91GeV,m_b = 5.27GeV. \hfill \\ \end{gathered}$$   相似文献   

3.
Using algebraic methods, we find the three-loop relation between the bare and physical couplings of one-flavourD-dimensional QED, in terms of Γ functions and a singleF 32 series, whose expansion nearD=4 is obtained, by wreath-product transformations, to the order required for five-loop calculations. Taking the limitD→4, we find that the \(\overline {MS} \) coupling \(\bar \alpha (\mu )\) satisfies the boundary condition $$\begin{gathered} \frac{{\bar \alpha (m)}}{\pi } = \frac{\alpha }{\pi } + \frac{{15}}{{16}}\frac{{\alpha ^3 }}{{\pi ^3 }} + \left\{ {\frac{{11}}{{96}}\zeta (3) - \frac{1}{3}\pi ^2 \log 2} \right. \hfill \\ \left. { + \frac{{23}}{{72}}\pi ^2 - \frac{{4867}}{{5184}}} \right\}\frac{{\alpha ^4 }}{{\pi ^4 }} + \mathcal{O}(\alpha ^5 ), \hfill \\ \end{gathered} $$ wherem is the physical lepton mass and α is the physical fine structure constant. Combining this new result for the finite part of three-loop on-shell charge renormalization with the recently revised four-loop term in the \(\overline {MS} \) β-function, we obtain $$\begin{gathered} \Lambda _{QED}^{\overline {MS} } \approx \frac{{me^{3\pi /2\alpha } }}{{(3\pi /\alpha )^{9/8} }}\left( {1 - \frac{{175}}{{64}}\frac{\alpha }{\pi } + \left\{ { - \frac{{63}}{{64}}\zeta (3)} \right.} \right. \hfill \\ \left. { + \frac{1}{2}\pi ^2 \log 2 - \frac{{23}}{{48}}\pi ^2 + \frac{{492473}}{{73728}}} \right\}\left. {\frac{{\alpha ^2 }}{{\pi ^2 }}} \right), \hfill \\ \end{gathered} $$ at the four-loop level of one-flavour QED.  相似文献   

4.
The asymptotic behavior of solutions to the Cauchy problem for the equation $$i\psi _\imath = \frac{1}{2}\Delta \psi - \upsilon (\psi )\psi , \upsilon = r^{ - 1} *|\psi |^2 ,$$ and for systems of similar form, is studied. It is shown that the norms $$\parallel \psi (t)\parallel _{L_2 (|x| \leqq R)}^2 + \parallel \nabla \psi (t)\parallel _{L_2 (|x| \leqq R)}^2 $$ are integrable in time for any fixedR>0, from which it follows that $$\mathop {\lim }\limits_{t \to \infty } \parallel \psi (t)\parallel _{L_2 (|x| \leqq R)} = 0.$$ \] Nevertheless, it is established that anL 2-scattering theory is impossible.  相似文献   

5.
Results of the search for rare radiative decay modes of the ?-meson performed with the Neutral Detector at the VEPP-2M collider are presented. For the first time upper limits for the branching ratios of the following decay modes have been placed at 90% confidence level: $$\begin{gathered} B(\phi \to \eta '\gamma )< 4 \cdot 10^{ - 4} , \hfill \\ B(\phi \to \pi ^0 \pi ^0 \gamma )< 10^{ - 3} , \hfill \\ B(\phi \to f_0 (975)\gamma )< 2 \cdot 10^{ - 3} , \hfill \\ B(\phi \to H\gamma )< 3 \cdot 10^{ - 4} , \hfill \\ \end{gathered} $$ whereH is a scalar (Higgs) boson with a mass 600 MeV<m H <1000 MeV, the real measurement isB(φH γB(H→2π0)<0.8·10-4, the quoted result is model dependent, as explained in the text, $$\begin{gathered} B(\phi \to a\gamma ) \cdot B(a \to e^ + e^ - )< 5 \cdot 10^{ - 5} , \hfill \\ B(\phi \to a\gamma ) \cdot B(a \to \gamma \gamma )< 2 \cdot 10^{ - 3} , \hfill \\ \end{gathered} $$ wherea is a particle with a low mass and a short lifetime, $$B(\phi \to a\gamma )< 0.7 \cdot 10^{ - 5} ,$$ wherea is a particle with a low mass not observed in the detector.  相似文献   

6.
The static hyperfine field ofB hf 4.2k (ErHo) = 739(18)T of a ferromagnetic holmium single crystal polarized in an external magnetic field of ± 0.48T at ~4.2K was used for integral perturbed γ-γ angular correlation (IPAQ measurements of the g-factors of collective states of166Er. The 1,200y 166m Ho activity was used which populates the ground state band and the γ vibrational band up to high spins. The results: $$\begin{gathered} g(4_g^ + ) = + 0.315(16) \hfill \\ g(6_g^ + ) = + 0.258(11) \hfill \\ g(8_g^ + ) = + 0.262(47)and \hfill \\ g(6_\gamma ^ + ) = + 0.254(32) \hfill \\ \end{gathered}$$ exhibit a significant reduction of the g-factors with increasing rotational angular momentum. The followingE2/M1 mixing ratios of interband transitions were derived from the angular correlation coefficients: $$\begin{gathered} 5_\gamma ^ + \Rightarrow 4_g^ + :\delta (810keV) = - (36_{ - 7}^{ + 11} ) \hfill \\ 7_\gamma ^ + \Rightarrow 6_g^ + :\delta (831keV) = - (18_{ - 2}^{ + 3} )and \hfill \\ 7_\gamma ^ + \Rightarrow 8_g^ + :\delta (465keV) = - (63_{ - 12}^{ + 19} ). \hfill \\ \end{gathered}$$ The results are discussed and compared with theoretical predictions.  相似文献   

7.
The results of the measurements of radiative decays of ρ and ω mesons with the Neutral Detector at thee + e ? collider VEPP-2M are presented. The branching ratio of the decay ω→π 0γ was measured with higher than in previous experiments accuracy: $${\rm B}(\omega \to \pi ^0 \gamma ) = 0.0888 \pm 0.0062$$ . The ρ0π 0 γ branching ratio was measured for the first time: $$B(\rho ^0 \to \pi ^0 \gamma ) = (7.9 \pm 2.0) \cdot 10^{ - 4} $$ . The decays ρ, ω→ηγ were studied. Their branching ratios with the assumption of constructive ρ?ω interference are: $$\begin{gathered} B(\omega \to \eta \gamma ) = (7.3 \pm 2.9) \cdot 10^{ - 4} , \hfill \\ B(\rho \to \eta \gamma ) = (4.0 \pm 1.1) \cdot 10^{ - 4} \hfill \\ \end{gathered} $$ . The branching ratios of ρ, ω→ηγ and ω→e + e ? decays were also measured: $$\begin{gathered} B(\omega \to \pi ^ + \pi ^ - \pi ^0 ) = 0.8942 \pm 0.0062, \hfill \\ B(\omega \to e^ + e^ - ) = (7.14 \pm 0.36) \cdot 10^{ - 5} \hfill \\ \end{gathered} $$ . The upper limit for the ω→π 0 π 0 γ branching ratio was placed: B(ωπ 0 π 0 γ)<4·10?4 at 90% confidence level.  相似文献   

8.
Applying a recently developed evaporation technique for refractory elements the following results have been obtained for Ta181 in an atomic beam magnetic resonance experiment studying the hyperfine structure of 3 levels of the ground state multiplet4 F: $$\begin{gathered} g_J (^4 F_{3/2} ) = 0.45024 (4) \hfill \\ \Delta v (^4 F_{3/2} ;F = 5 \leftrightarrow F = 4) = 1822.389 (6) MHz \hfill \\ \Delta v (^4 F_{3/2} ;F = 4 \leftrightarrow F = 3) = 2325.537 (2) MHz \hfill \\ \Delta v (^4 F_{5/2} ;F = 6 \leftrightarrow F = 5) = 1451.476 (7) MHz \hfill \\ \Delta v (^4 F_{5/2} ;F = 5 \leftrightarrow F = 4) = 1537.530 (8) MHz \hfill \\ \Delta v (^4 F_{5/2} ;F = 4 \leftrightarrow F = 3) = 1444.685 (2) MHz \hfill \\ \Delta v (^4 F_{7/2} ;F = 4 \leftrightarrow F = 3) = 1218.372 (2) MHz. \hfill \\ \end{gathered}$$ From these measurements the following constants of the magnetic dipole interaction (A) and the electric quadrupole interaction (B) have been derived: $$\begin{gathered} A (^4 F_{3/2} ) = 509.0801 (8) MHz \hfill \\ B (^4 F_{3/2} ) = - 1012.251 (8) MHz \hfill \\ A (^4 F_{5/2} ) = 313.4681 (8) MHz \hfill \\ B (^4 F_{5/2} ) = - 834.820 (12) MHz. \hfill \\ \end{gathered}$$   相似文献   

9.
Radio frequency spectra of CsF in the rotational stateJ=1 have been measured for the vibrational statesv=0, 1,..., 8 using the molecular beam electric resonance method. The analysis of the spectra yields the electric dipole moment μv and the quadrupole coupling constanteq v Q connected with the quadrupole moment of the Cs nucleus. The results are: $$\begin{gathered} \mu _\upsilon = 7.8478 + 0.07026(\upsilon + 1/2) + 0.000195(\upsilon + 1/2)^2 debye \hfill \\ eq_\upsilon Q/h = 1245.2 - 16.2(\upsilon + 1/2) + 0.31(\upsilon + 1/2)^2 kHz. \hfill \\ \end{gathered} $$   相似文献   

10.
S Doraiswamy 《Pramana》1982,18(4):303-309
The centrifugal distortion analysis of the pure rotational spectrum of pentafluorobenzene in the frequency region of 8 to 18 GHz involvingJ upto 54 has yielded the following rotational and quartic centrifugal distortion constants: $$\begin{gathered} A'' = 1480 \cdot 8665 \pm 0 \cdot 0026 MHz, \tau = - 1 \cdot 751 \pm 0 \cdot 20 kHz, \hfill \\ B'' = 1030 \cdot 0782 \pm 0 \cdot 0025 MHz, \tau _2 = - 0 \cdot 567 \pm 0 \cdot 066 kHz, \hfill \\ C'' = 607 \cdot 5152 \pm 0 \cdot 0026 MHz, \tau _{aaaa} = - 0 \cdot 765 \pm 0 \cdot 068 kHz, \hfill \\ \tau _{bbbb} = - 0 \cdot 612 \pm 0 \cdot 065 kHz, \hfill \\ \tau _{cccc} = - 0 \cdot 547 \pm 0 \cdot 068 kHz. \hfill \\ \end{gathered} $$   相似文献   

11.
In a previous paper we investigated a class ofnonpeeling asymptotic vacuum solutions which were shown to admit finite expressions for the Winicour-Tamburino energy-momentum and angular momentum integrals. These solutions have the property that $$\psi _0 = O(r^{ - 3 - \in _0 } ), \in _0 \leqslant 2$$ and $$\psi _1 = O(r^{ - 3 - \in _1 } ), \in _1< \in _0 and \in _1< 1$$ withψ 2,ψ 3, andψ 4 having the same asymptotic behavior as they do for peeling solutions. The above investigation was carried out in the physical space-time. In this paper we examine the conformal properties of these solutions, as well as the more general Couch-Torrence solutions, which include them as a subclass. For the Couch-Torrence solutions $$\begin{gathered} \psi _0 = O(r^{ - 2 - \in _0 } ) \hfill \\ \psi _1 = O(r^{ - 2 - \in _1 } ), \in _1< \in _0 {\text{ }}and \in _1 \leqslant 2 \hfill \\ \end{gathered} $$ and , $$\psi _2 = O(r^{ - 2 - \in _2 } ),{\text{ }} \in _2< \in _1 {\text{ }}and \in _2 \leqslant 1$$ withψ 3 andψ 4 behaving as they do for peeling solutions. It is our purpose to determine how much of the structure generally associated with peeling space-times is preserved by the nonpeeling solutions. We find that, in general, a three-dimensional null boundary (?+) can be defined and that the BMS group remains the asymptotic symmetry group. For the general Couch-Torrence solutions several physically and/or geometrically interesting quantities  相似文献   

12.
Let $$\begin{gathered} u^* = u + \in \eta (x,{\text{ }}t,{\text{ }}u), \hfill \\ \hfill \\ \hfill \\ x^* = x + \in \xi (x, t, u{\text{),}} \hfill \\ \hfill \\ \hfill \\ {\text{t}}^{\text{*}} = {\text{ }}t + \in \tau {\text{(}}x,{\text{ }}t,{\text{ }}u), \hfill \\ \end{gathered}$$ be an infinitesimal invariant transformation of the evolution equation u t =H(x,t,u,?u/?x,...,? n :u/?x n . In this paper we give an explicit expression for \(\eta ^{X^i }\) in the ‘determining equation’ $$\eta ^T = \sum\limits_{i = 1}^n {{\text{ }}\eta ^{X^i } {\text{ }}\frac{{\partial H}}{{\partial u_i }} + \eta \frac{{\partial H}}{{\partial u_{} }} + \xi \frac{{\partial H}}{{\partial x}} + \tau } \frac{{\partial H}}{{\partial t}},$$ where u i =? i u/?x i . By using this expression we derive a set of equations with η, ξ, τ as unknown functions and discuss in detail the cases of heat and KdV equations.  相似文献   

13.
205,207Po have keen implanted with an isotope separator on-line into cold host matrices of Fe, Ni, Zn and Be. Nuclear magnetic resonance of oriented207Po has been observed in Fe and Ni, of205Po in Fe. The resonance frequencies for zero external field are $$\begin{gathered} v_L (^{207} Po\underline {Fe} ) = 575.08(20)MHz \hfill \\ v_L (^{207} Po\underline {Ni} ) = 160.1(8)MHz \hfill \\ v_L (^{205} Po\underline {Fe} ) = 551.7(8)MHz. \hfill \\ \end{gathered} $$ From the dependence of the resonance frequency on external magnetic field theg-factor of207Po was derived as $$g(^{207} Po) = + 0.31(22).$$ Using this value the magnetic hyperfine fields of Po in Fe and Ni were obtained as $$\begin{gathered} B_{hf} (Po\underline {Fe} ) = + 238(16)T \hfill \\ B_{hf} (Po\underline {Ni} ) = 66.3(4.6)T. \hfill \\ \end{gathered}$$ Theg-factor of205Po follows as $$g(^{205} Po) = + 0.304(22).$$ From the temperature dependence of the anisotropies ofγ-lines in the decay of205,207Po the multipole mixing of several transitions was derived. The electric interaction frequenciesv Q=eQVzz/h in the hosts Zn and Be were measured as $$\begin{gathered} v_Q (^{207} Po\underline {Zn} ) = + 42(3)MHz \hfill \\ v_Q (^{207} Po\underline {Be} ) = - 70(20)MHz \hfill \\ v_Q (^{205} Po\underline {Be} ) = - 42(17)MHz. \hfill \\ \end{gathered}$$   相似文献   

14.
The extension of the tensor potentialS 12 V T (r) to the case of a nonlocal interaction is shown to be $$\begin{gathered} V_T (r{\text{,}}r'{\text{) = }}S_{12}^N F(r,r') \hfill \\ {\text{ = }}\tfrac{{\text{1}}}{{\text{2}}}[9(\rho \cdot \rho '{\text{)(}}\sigma _1 \cdot \rho \sigma _2 \cdot \rho '{\text{ + }}\sigma _1 \cdot \rho '\sigma _2 \cdot \rho {\text{)}} - 2(\sigma _1 \cdot \sigma _2 )]F(r,r'), \hfill \\ \end{gathered}$$ where ρ=r/r. This potential has the necessary invariance properties provided thatF(r, r′)=F(r′, r). With this potential andF(r, r′) taken to have a rank-one separable form, the behaviour of the model-deuteron radius with respect to the strength of the tensor nonlocality is investigated. It is found that the model radius decreases as the tensor nonlocality becomes more attractive. This is consistent with recent work which considers only central nonlocality.  相似文献   

15.
Using the atomic beam magnetic resonance method, precision measurements of the hyperfine structure and Zeeman interactions have been performed in the ground state 4f 126s 2 3 H 6 of167Er. The experimental data were analyzed using an effective operator parametrized in the space of states of the ground state multiplet. It yielded eight effective hyperfine structure and Zeeman interaction constants which served to calculate the seven hyperfine separations of the ground state. The results are: $$\begin{gathered} 2F 2F' v_{FF'} (MHz) \hfill \\ 5 7 - 354.371 9409 (27) \hfill \\ 7 9 - 2{\text{78}}{\text{.231}} {\text{8263(14)}} \hfill \\ {\text{9}} 11 - 69.050 7785 (4) \hfill \\ 11 13 + 302.735 3731(12) \hfill \\ 13 15 + 866.691 3871(10) \hfill \\ 15 17 + 1,652.383 5154 (6) \hfill \\ 17 19 + 2,689.380 8050(10) \hfill \\ \end{gathered}$$ From the effective Zeeman interaction constants it was possible to determine an improvedg I -value, uncorrected for atomic diamagnetism: $$ g_I = + 0.086 775 (19) \cdot 10^{ - 3}$$ Furthermore a hexadecapole interaction corresponding to a diagonal hexadecapole interaction constant $$A_4 = - 16 (10) Hz$$ could be established which is of the order of magnitude expected from Coulomb excitation experiments as well as theoretical calculations.  相似文献   

16.
For the absolute value |C|=(C*C)1/2 and the Hilbert-Schmidt norm ∥CHS=(trC*C)1/2 of an operatorC, the following inequality is proved for any bounded linear operatorsA andB on a Hilbert space $$|| |A|---|B| ||_{HS} \leqq 2^{1/2} ||A - B||_{HS} $$ . The corresponding inequality for two normal state ? and ψ of a von Neumann algebraM is also proved in the following form: $$d(\varphi ,\psi ) \leqq ||\xi (\varphi ) - \xi (\psi )|| \leqq 2^{1/2} d(\varphi ,\psi )$$ . Here ξ(χ) denotes the unique vector representative of a state χ in a natural positive coneP ? forM, andd(?, ψ) denotes the Bures distance defined as the infimum (which is also the minimum) of the distance of vector representatives of ? and ψ. In particular, $$||\xi (\varphi _1 ) - \xi (\varphi _2 )|| \leqq 2^{1/2} ||\xi _1 - \xi _2 ||$$ for any vector representatives ξ j of ? j ,j=1, 2.  相似文献   

17.
18.
Studying the coherent diffractive production of pions in neutrino and antineutrino scattering off the nuclei of freon molecules we have observed for the first time in one experiment all three states of the isospin triplet of the axial part of the weak charged and neutral currents. For the corresponding cross sections we derive $$\begin{array}{*{20}c} {\sigma _{coh}^v (\pi ^ + ) = (106 \pm 16) \cdot 10^{ - 40} {{cm^2 } \mathord{\left/ {\vphantom {{cm^2 } {\left\langle {nucl.} \right\rangle }}} \right. \kern-\nulldelimiterspace} {\left\langle {nucl.} \right\rangle }}} \\ {\sigma _{coh}^{\bar v} (\pi ^ - ) = (113 \pm 35) \cdot 10^{ - 40} {{cm^2 } \mathord{\left/ {\vphantom {{cm^2 } {\left\langle {nucl.} \right\rangle }}} \right. \kern-\nulldelimiterspace} {\left\langle {nucl.} \right\rangle }}and} \\ {\sigma _{coh}^v (\pi ^0 ) = (52 \pm 19) \cdot 10^{ - 40} {{cm^2 } \mathord{\left/ {\vphantom {{cm^2 } {\left\langle {nucl.} \right\rangle }}} \right. \kern-\nulldelimiterspace} {\left\langle {nucl.} \right\rangle }}} \\ \end{array} $$ . Comparing our data with theoretical predictions based on the standard model of weak interactions we find reasonable agreement. Independently from any model of coherent pion production we determine the isovector axial vector coupling constant to be |β|=0.99±0.20.  相似文献   

19.
In this paper we will study the nonlinear Schrödinger equations: $$\begin{gathered} i\partial _t u + \tfrac{1}{2}\Delta u = \left| u \right|^2 u, (t,x) \in \mathbb{R} \times \mathbb{R}_x^n , \hfill \\ u(0,x) = \phi (x), x \in \mathbb{R}_x^n \hfill \\ \end{gathered} $$ . It is shown that the solutions of (*) exist and are analytic in space variables fort∈??{0} if φ(x) (∈H 2n+1,2(? x n )) decay exponentially as |x|→∞ andn≧2.  相似文献   

20.
We calculate, exactly, the next-to-leading correction to the relation between the \(\overline {MS} \) quark mass, \(\bar m\) , and the scheme-independent pole mass,M, and obtain $$\begin{gathered} \frac{M}{{\bar m(M)}} \approx 1 + \frac{4}{3}\frac{{\bar \alpha _s (M)}}{\pi } + \left[ {16.11 - 1.04\sum\limits_{i = 1}^{N_F - 1} {(1 - M_i /M)} } \right] \hfill \\ \cdot \left( {\frac{{\bar \alpha _s (M)}}{\pi }} \right)^2 + 0(\bar \alpha _s^3 (M)), \hfill \\ \end{gathered} $$ as an accurate approximation forN F?1 light quarks of massesM i <M. Combining this new result with known three-loop results for \(\overline {MS} \) coupling constant and mass renormalization, we relate the pole mass to the \(\overline {MS} \) mass, \(\bar m\) (μ), renormalized at arbitrary μ. The dominant next-to-leading correction comes from the finite part of on-shell two-loop mass renormalization, evaluated using integration by parts and checked by gauge invariance and infrared finiteness. Numerical results are given for charm and bottom \(\overline {MS} \) masses at μ=1 GeV. The next-to-leading corrections are comparable to the leading corrections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号