首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Properties and efficacies of novel aldose reductase (AR) inhibitors, M16209 (1-(3-bromobenzo[b]furan-2-ylsulfonyl)hydantoin) and M16287 (1-(3-chlorobenzo[b]furan-2-ylsulfonyl)hydantoin), were examined in vitro and in vivo, compared with known AR inhibitors, ONO-2235 and sorbinil. These four compounds inhibited partially purified aldose reductases from various origins, and the potencies of M16209 and M16287 were on the whole similar to ONO-2235, and were greater than that of sorbinil. The IC50 values of the four AR inhibitors did not substantially depend on the substrate used. Kinetic studies of inhibition of partially purified bovine lens (BLAR) revealed that M16209, M16287 and sorbinil were uncompetitive with glyceraldehyde and noncompetitive with nicotineamide adenine dinucleotide phosphate (NADPH), whereas ONO-2235 was noncompetitive with both glyceraldehyde and NADPH. Aldose reductase became less sensitive to the four inhibitors as enzyme purification progressed, although the susceptibility to inhibition was partially reversed by incubation with dithiothreitol. In addition, the four compounds slightly affected those enzymes of carbohydrate and glutathione metabolism which were tested. M16209 and M16287 prevented sorbitol accumulation in isolated rat tissues as potently as ONO-2235 and sorbinil. M16209 and M16287 were effective in the prevention of galactosemic cataracts and amelioration of diabetic neuropathy with almost the same potency, while ONO-2235 was effective only in neuropathy, and sorbinil was effective in galactosemic cataracts and diabetic neuropathy with a different potency. These results indicate that M16209 and M16287 are potent aldose reductase inhibitors, which could be applicable to treatment for diabetic complications.  相似文献   

2.
An enzyme (befunolol reductase) which catalyzes the reduction of befunolol to dihydrobefunolol was purified from the cytosolic fraction of rabbit liver to homogeneity by various chromatographic techniques. Befunolol reductase had molecular weights of 29000 on sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis and 34000 on gel filtration. The enzyme required reduced nicotinamide adenine dinucleotide phosphate (NADPH) as a cofactor and showed an optimal pH of 6.5. The apparent Km and Vmax values of the enzyme for the reduction of befunolol were 1.7 mM and 4.4 units/mg, respectively. Flavonoids, sulfhydryl reagents, heavy metals and coumarins strongly inhibited the enzyme. The enzyme catalyzed the reduction of a variety of aromatic ketones. In addition to befunolol, some ketone-containing drugs such as daunorubicin and levobunolol were efficiently reduced by the enzyme. On the basis of substrate specificities for steroids, befunolol reductase purified from the cytosolic fraction of rabbit liver appeared to be a 3 alpha-hydroxysteroid dehydrogenase.  相似文献   

3.
Electron spin resonance studies showed that addition of rat liver microsomes to the reaction system of alloxan with reduced nicotinamide adenine dinucleotide phosphate (NADPH) resulted in a marked increase in the generation of alloxan radicals (AH.), whereas heat-denatured microsomes were without such effect. Oxidation of NADPH by alloxan was also stimulated by microsomes. The microsomes from rats treated with phenobarbital, an inducer of cytochrome P-450 reductase, greatly stimulated both the AH.generation and the NADPH oxidation. However, the microsomes from rats treated with 3-methylcholanthrene, an inducer of DT-diaphorase, did not have stimulative effect greater than the control microsomes. These results suggest the possibility that NADPH-linked AH.generations in microsomal membranes is catalyzed by NADPH-cytochrome P-450 reductase.  相似文献   

4.
In comparison with the large number of nonribosomal peptide synthetases (NRPSs) that release their peptide products by hydrolytic cleavage of the peptide carrier protein (PCP) bound thioester, there are relatively few NRPSs that have been shown to use a nicotinamide cofactor to reduce this PCP-peptidyl thioester to an aldehyde or imine moiety. This work describes the first example of a reductase domain within a NRPS scaffold shown to reduce a PCP-peptidyl thioester to the corresponding primary alcohol, via an aldehyde intermediate, using two equivalents of reduced nicotinamide adenine dinucleotide phosphate (NADPH). By employing a ketone mimic of the aldehyde intermediate, as well as a specifically deuterated NADPH, it was further demonstrated that the pro-S hydride of the cofactor is transferred to the re face of the carbonyl group.  相似文献   

5.
The kinetic mechanism for the reduction of befunolol catalyzed by befunolol reductase from rabbit liver was investigated. From the initial velocity analysis, product inhibition and coenzyme binding studies, the reduction of befunolol was found to proceed through an ordered Bi Bi mechanism, in which beta-nicotinamide adenine dinucleotide phosphate, reduced form (NADPH) binds to the enzyme firstly and NADP+ leaves lastly. NADPH bound to the free enzyme at a molar ratio of 1:1. Furthermore, the result of dead-end inhibition by Cibacron blue F3GA, a nucleotide analogue which binds to many enzymes, was consistent with the ordered Bi Bi mechanism for the enzyme.  相似文献   

6.
Reductive metabolism of the hair dye constituent, nitro-p-phenylenediamine (2-nitro-1,4-diaminobenzene, NPDA), and its acetylated metabolite, NPDA N4-acetate, was investigated with rat liver subcellular fractions, microsomes and cytosol. Under anaerobic conditions, these compounds were reduced to their corresponding amines by these fractions. The microsomal nitro-reducing activity was retarded completely by air and strongly by carbon monoxide. Reduced nicotinamide adenine dinucleotide phosphate (NADPH) functioned more effectively than reduced nicotinamide adenine dinucleotide (NADH) as an electron donor in the microsomal reduction of the nitro compounds, and flavin mononucleotide (FMN) gave rise to a marked enhancement in the microsomal activity, especially when added to an anaerobic incubation mixture containing both NADH and NADPH. The cytosolic nitro-reducing activity was attributed to xanthine oxidase, aldehyde oxidase and other unknown enzyme(s), based on the results of cofactor requirements and inhibition experiments.  相似文献   

7.
In living cells, redox chains rely on nanoconfinement using tiny enclosures, such as the mitochondrial matrix or chloroplast stroma, to concentrate enzymes and limit distances that nicotinamide cofactors and other metabolites must diffuse. In a chemical analogue exploiting this principle, nicotinamide adenine dinucleotide phosphate (NADPH) and NADP+ are cycled rapidly between ferredoxin–NADP+ reductase and a second enzyme—the pairs being juxtaposed within the 5–100 nm scale pores of an indium tin oxide electrode. The resulting electrode material, denoted (FNR+E2)@ITO/support, can drive and exploit a potentially large number of enzyme‐catalysed reactions.  相似文献   

8.
Capillary electrophoresis (CE) with multiphoton-excited fluorescence detection (CE-MPE) allows low-background analysis of spectrally distinct fluorophores using a single long-wavelength laser. Extracts were prepared from immortalized rat raphe nuclei neurons, and were analyzed by CE-MPE. Native fluorescence was detected from reduced nicotinamide adenine dinucleotide (NADH) and its phosphorylated form (NADPH), flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), riboflavin, serotonin, and 5-hydroxytryptophan (5HTrp). Quantitation of exogenous serotonin (taken up by cells) and endogenous NADH and 5HTrp was possible using internal standards or standard addition. This system should be useful to study monamine oxidase inhibitors (MAOIs) and selective serotonin reuptake inhibitors (SSRIs).  相似文献   

9.
Simultaneous extraction, separation and quantitation of reduced nicotinamide adenine dinucleotide (NADH), reduced nicotinamide adenine dinucleotide phosphate (NADPH), flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) in Chinese Hamster Ovary (CHO) cells were investigated. The separation of flavins and nicotinamide cofactors was performed by capillary electrophoresis with laser-induced fluorescence detection at the excitation wavelength of 325 nm. The separation protocol was established by investigating the excitation wavelength, high voltage and effects of buffer nature, pH and concentration. All endogenous fluorophores riboflavin, FAD, FMN, NADH and NADPH show wide linear range of quantitation. The limits of detection for the five compounds ranged from 4.5 to 23 nM. Extraction conditions were optimized for high-efficiency recovery of all endogenous fluorophores from CHO cells. To account for the complex matrix of cell extracts, a standard addition method was used to quantify FAD, FMN, NADH and NADPH in CHO cells. The quantitative results should be useful to reveal the metabolic status of cells. The protocols for extraction, separation and quantitation are readily adaptable to normal and cancer cell lines for the analysis of endogenous fluorophores.  相似文献   

10.
Timur S  Odaci D  Dincer A  Zihnioglu F  Telefoncu A 《Talanta》2008,74(5):1492-1497
Chitosan membrane with glutathione reductase and sulfhydryl oxidase (SOX) was subsequently integrated onto the surface of spectrographic graphite rods for obtaining a glutathione biosensor. The working principle was based on the monitoring of O2 consumption that correlates the concentration of glutathione during the enzymatic reaction. A linear relationship between sensor response and concentration was obtained between 0.5 and 2.0 mM for oxidized glutathione (GSSG), and 0.2–1.0 mM for reduced glutathione (GSH) in the presence of 2 μM nicotinamide adenine dinucleotide phosphate (NADPH) under the optimum working conditions. Also, reduced/oxidized glutathione were separated by HPLC and utility of bienzymatic system was investigated as an electrochemical detector for the analysis of these compounds. All data were given as a comparison of two systems: biosensor and diode array detector (DAD).  相似文献   

11.
12.
The use of CE for rapid assessment of metabolic stability of drugs with cytochrome P450 (CYP) enzymes, based on relative rates of reduced nicotinamide adenine dinucleotide phosphate (NADPH) consumption and nicotinamide adenine dinucleotide phosphate (NADP) production, was investigated. The separation conditions were as follows: capillary, 80.5 cm (75 microm id, 72 cm effective length for UV detection, 58 cm effective length for fluorescence detection); 25 mM sodium phosphate buffer (pH 8.8); 28 kV (80 microA) applied voltage; UV, 260 nm; fluorescence detection, excitation wavelength, 310 nm, emission wavelength, 418 nm; capillary temperature, 25 degrees C. For UV detection, the incubation conditions were as follows: CYP3A4: 20 pmol/mL; NADPH: 1 mM; EDTA: 1 mM; concentration of the substrate: 5-10 times its reported literature K(m) value; temperature: 37 degrees C; incubation time: 15 min. For fluorescence detection, the concentrations were reduced to CYP3A4: 4 pmol/mL, NADPH: 20 microM, EDTA: 20 microM and substrate: 10 microM. Blank incubations were performed in the absence of substrate. Compared with the blank, significant differences were found for the consumption of NADPH and the production of NADP. The development of this assay system allows rapid assessment of metabolic stability relative to standard compounds, as well as potential identification of the major CYP involved in the metabolism. It would reduce the backlog of compounds that require LC/MS analysis, and thereby expedite the process of metabolic stability screening.  相似文献   

13.
This review aims to provide a summary of the progress in fluorescent probes for nitroreductase (NTR) in recent years and displays the main fluorescent mechanisms that have been applied to design probes.  相似文献   

14.
Nicotinamide coenzymes nicotinamide adenine dinucleotide (NAD(+)) and nicotinamide adenine dinucleotide phosphate (NADP(+)) were electrochemically reduced to NADH and NADPH, respectively. As direct reduction of nicotinamide coenzymes leads to inactive by-products, an indirect method using (pentamethylcyclopentadienyl-2,2'-bipyridine aqua) rhodium (III) as the mediator, was applied. A phosphate buffer solution, pH 8, with 1-10 mM NAD(P)(+) and 2.5-200 microM mediator, was pumped through a glassy carbon packed bed cathode. Virtually all the NAD(P)(+) was reduced to NAD(P)H in the cell. No sign of mediator loss due to side-reactions was detected though the mediator molecules shuttled hundreds of times between the oxidised and the reduced form. Adsorption of mediator molecules on the surface of the carbon cathode was found to be important for the reduction process. Due to strong adsorption, only minute amounts of mediator were consumed.  相似文献   

15.
烟酰胺腺嘌呤二核苷酸磷酸与生物光化学   总被引:1,自引:0,他引:1  
王乃兴 《化学通报》2003,66(10):705-711
生物光化学的核心内容是光合作用。在光合作用这个生物光化学的核心领域,烟酰胺腺嘌呤二核苷酸磷酸(NADPH)始终起着极其重要的作用,NADPH就是一个传递电子和能量的最关键活性生物分子。本文对海洋里的光合作用、细菌与光合作用以及光合作用的模拟等作了介绍。  相似文献   

16.
The dominant voltammetric response of a yeast suspension in neutral or slightly alkaline media can be assigned to the redox transformations of nicotinamide adenine dinucleotide (NAD+/NADH) and nicotinamide adenine dinucleotide phosphate (NADP+/NADPH). By immobilization of yeast on platinum, a stable electrode can be prepared which shows an electrocatalytic activity towards the reduction of NADP+ and the reoxidation of the product formed. Reversible cyclic voltammetric responses were obtained. The peak currents depend practically linearly on the NADP-Na2 concentration and on the square root of the scan rate. The surface mass changes accompanying the redox transformations were monitored by an electrochemical quartz crystal nanobalance.  相似文献   

17.
From the stems of Kadsura heteroclita, two new lignans named heteroclitins F and G were isolated and their structures were determined by various spectroscopic means including an X-ray diffraction method. Dibenzocyclooctadiene type lignans and related compounds isolated from the stems of K. heteroclita, potently inhibited the lipid peroxidation in the rat liver homogenate stimulated by Fe(2+)-ascorbic acid, CCl4-reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) and adenosine 5'-diphosphate-NADPH.  相似文献   

18.
Molecular dynamics simulations have been used to investigate the ternary complex formed between chicken liver dihydrofolate reductase, a phenyl triazine inhibitor, and reduced nicotinamide adenine dinucleotide phosphate (NADPH). The solvent was represented by a sphere of water molecules encompassing the system. We report the results of quantum mechanical calculations of the rotational barrier in the pyrophosphate link and the barrier to inversion of the triazine ring. AMBER parameters for NADPH and the triazine are provided. Over the course of a 300-ps molecular dynamics simulation of the ternary complex in water, the triazine inhibitor maintains the same hydrogen bonding and hydrophobic interactions with the enzyme that are observed in the X-ray crystal structure. Despite the low calculated barrier to inversion of the triazine ring, a single puckered conformation is observed throughout the simulation. It is proposed that this is primarily due to interactions with Phe34, which maintains an approximately parallel orientation to the triazine ring. The nicotinamide portion of NADPH maintains the interactions observed in the crystal structure, but more conformational change is observed at the adenine end together with associated changes in the protein. Two conformations for the sidechain of Tyr31 are present in the X-ray structure. The main simulation reported here corresponds to the conformation characterized by (χ1 = ? 161°, χ2 = ? 103°). A separate simulation was also performed in which the sidechain of Tyr31 was initially set to the other conformation present in the crystal structure (χ1 = 139°, χ2 = ?99°). During this simulation, χ1 of this sidechain gradually changed until it occupied the region characterized by χ1 = ?160°, thereby suggesting that this is the preferred conformation for this residue. The simulation required 200 ps to reach structural equilibrium (as measured by the root mean square, rms, deviation from the initial crystal structure), thus reinforcing the view that simulations of at least several hundreds of picoseconds are desirable when studying such systems. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
The nonribosomally produced hydroxamate siderophore coelichelin from Streptomyces coelicolor contains the nonproteinogenic amino acids N(5)-hydroxyornithine and N(5)-hydroxyformylornithine that are important for iron assembly. The hydroxylation of the delta-amino group of L-ornithine is catalyzed by the flavin-dependent monooxygenase CchB. During the redox reaction nicotinamide adenine dinucleotide phosphate (NADPH) and molecular oxygen are consumed and flavin adenine dinucleotide (FAD) is needed as a cofactor. During this work the monooxygenase was biochemically characterized and it could be shown that the hydroxylation of l-ornithine is most likely the first step in the biosynthesis of the siderophore coelichelin.  相似文献   

20.
Androst-4-ene-3,6-dione derivatives 2-4 and 3 alpha-methoxy-4-en-6-one steroid 7 were prepared and tested for their ability to inhibit aromatase in human placental microsomes. The 16 alpha-bromide 2, the 16 alpha-alcohol 3, and the 3 alpha-methoxide 7 of this series were effective competitive inhibitors of aromatase with apparent Ki's of 150 nM, 1.18 microM, and 700 nM. Compound 2 caused a time-dependent, biphasic loss of aromatase activity in the presence of reduced nicotinamide adenine dinucleotide phosphate (NADPH) while compound 7 caused a time-dependent, pseudo-first order inactivation of the activity, with kinact's of 0.417 and 0.036 min-1 for compounds 2 and 7. NADPH and oxygen were required for the time-dependent inactivation and the substrate, androst-4-ene-3,17-dione, prevented it in each case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号