首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
The high-frequency region was used to record the absorption spectrum of water in nanoscale pores during vacuum pumping or injection of water. The wide spectral range, which included the vibration overtones, allowed to resolve the structure of the absorption bands with variation of water concentration in the pores of SiO(2). The absorption bands of water clusters in the 4570-5400 cm(-1) range consist of well-resolved sub-bands with interpeak intervals of up to 580 cm(-1). When the pore diameter is decreased from 11.8 to 2.6 nm, the absorption bands of clusters in this frequency range are shifted by 530 cm(-1) in the direction of the water monomer which indicates an increase of hydrogen bond strength in confined water with an increase of the pore diameter. The spectrum recorded during water pumping is extremely variable in time, and the cluster dynamics in large pores (11.8 nm) differs greatly from the dynamics in small pores (2.6 nm). While all types of water clusters are removed from small pores uniformly, in the case of large pores, the water clusters relating to strong hydrogen bonds are removed from the sample at the beginning of the vacuum pumping and the loosely coupled clusters are removed later. The rate of this process is not steady and varies throughout pumping.  相似文献   

2.
The permeation of hydrophobic, cylindrical nanopores by water molecules and ions is investigated under equilibrium and out-of-equilibrium conditions by extensive molecular-dynamics simulations. Neglecting the chemical structure of the confining pore surface, we focus on the effects of pore radius and electric field on permeation. The simulations confirm the intermittent filling of the pore by water, reported earlier under equilibrium conditions for pore radii larger than a critical radius R(c). Below this radius, water can still permeate the pore under the action of a strong electric field generated by an ion concentration imbalance at both ends of the pore embedded in a structureless membrane. The water driven into the channel undergoes considerable electrostriction characterized by a mean density up to twice the bulk density and by a dramatic drop in dielectric permittivity which can be traced back to a considerable distortion of the hydrogen-bond network inside the pore. The free-energy barrier to ion permeation is estimated by a variant of umbrella sampling for Na(+), K(+), Ca(2+), and Cl(-) ions, and correlates well with known solvation free energies in bulk water. Starting from an initial imbalance in ion concentration, equilibrium is gradually restored by successive ion passages through the water-filled pore. At each passage the electric field across the pore drops, reducing the initial electrostriction, until the pore, of radius less than R(c), closes to water and hence to ion transport, thus providing a possible mechanism for voltage-dependent gating of hydrophobic pores.  相似文献   

3.
孔结构对活性炭吸附水溶液中铅离子的影响   总被引:2,自引:0,他引:2  
选取三种表面化学性质相近的活性炭(AC),通过等温吸附实验考察活性炭对水溶液中铅离子的吸附性能,利用扫描电子显微镜(SEM)观察活性炭的表面微观形貌,通过低温(77 K)液氮吸附测定活性炭的比表面积和孔容,并分别以密度泛函理论(DFT)和Barrett-Joyner-Halenda (BJH)法计算微孔和中孔的孔径分布.结果表明:选用的三种活性炭AC1、AC2、AC3在比表面积和总孔容上呈依次下降的趋势,但表面开放孔均匀分布的AC2,具有最高的饱和吸附量,孔结构类似颗粒堆积孔的AC3,具有与表面开放孔分布集中的AC1相近的饱和吸附量;通过对孔结构与吸附量的关联分析可知,在活性炭吸附铅离子的过程中, 0.4-0.6 nm的孔是有效吸附孔, 10.5-20.6 nm、20.6-55.6 nm、5.2-10.5 nm三个区间的孔则会对吸附产生阻碍作用.  相似文献   

4.
Melting and freezing of water in cylindrical silica nanopores   总被引:1,自引:0,他引:1  
Freezing and melting of H(2)O and D(2)O in the cylindrical pores of well-characterized MCM-41 silica materials (pore diameters from 2.5 to 4.4 nm) was studied by differential scanning calorimetry (DSC) and (1)H NMR cryoporometry. Well-resolved DSC melting and freezing peaks were obtained for pore diameters down to 3.0 nm, but not in 2.5 nm pores. The pore size dependence of the melting point depression DeltaT(m) can be represented by the Gibbs-Thomson equation when the existence of a layer of nonfreezing water at the pore walls is taken into account. The DSC measurements also show that the hysteresis connected with the phase transition, and the melting enthalpy of water in the pores, both vanish near a pore diameter D* approximately equal to 2.8 nm. It is concluded that D* represents a lower limit for first-order melting/freezing in the pores. The NMR spin echo measurements show that a transition from low to high mobility of water molecules takes place in all MCM-41 materials, including the one with 2.5 nm pores, but the transition revealed by NMR occurs at a higher temperature than indicated by the DSC melting peaks. The disagreement between the NMR and DSC transition temperatures becomes more pronounced as the pore size decreases. This is attributed to the fact that with decreasing pore size an increasing fraction of the water molecules is situated in the first and second molecular layers next to the pore wall, and these molecules have slower dynamics than the molecules in the core of the pore.  相似文献   

5.
N2静态吸附容量法的测定结果表明,磷钨酸铯盐(CsxH3-xPW12O40)的孔窝和孔分布与x值的大小相关。x〈1.5的CsxH3-xPW12O40孔容相近,孔分布近似;当x〉1.5时,CsxH3-xPW12O40的孔主要是孔径小于10nm的中孔和微孔,平均孔径及孔容随x的增加而增大。SEM和TEM的观测结果表明,CsxH3-xPW12O40的孔是微细粒子堆积留下的空隙孔,可能不存在晶内孔。  相似文献   

6.
国产硅藻土结构的研究   总被引:19,自引:0,他引:19  
系统地研究了硅藻土结构, 发现除浙江白土表面具有双生的硅羟基外, 其它只有连生的与孤立的硅羟基; 经IR谱证明, 其内部尚有Si-O与Al-O振动, 酸洗或焙烧都能使硅藻体的孔径、孔径分布和结构发生改变; 经焙烧后, 结构均发生改变, 其自由水消失, 束缚水逐渐减少; 焙烧达1150℃时, 原组成无定形二氧化硅则晶化为α-方石英, 除吉林土具有一级孔洞, 云南土具有三级孔洞外, 本文中其它硅藻土均有二级孔洞。  相似文献   

7.
The generation of porous silica with hierarchically organized bimodal mesoporosity of adjustable size and well-defined shape was investigated by using surfactant mixtures and the nanocasting procedure (liquid crystalline templating). A systematic study of combinations of various block copolymers (Pluronics F127, KLE (poly(omega-hydroxypoly(ethylene-co-butylene)-co-poly(ethylene oxide))) and SE (PS-co-PEO)) with smaller surfactants (Pluronics P123, C16mimCl, and CTAB) revealed that hierarchical bimodal mesopore architectures could only be obtained by the usage of block copolymers with a strong hydrophilic-hydrophobic contrast, such as KLE and SE, giving rise to pores between 6 and 22 nm. Furthermore, the ionic liquid (IL) C16mimCl appeared to have advantageous templating properties, resulting in 2-3-nm pores being located between the block copolymer mesopores, whereas phase separation was observed for Pluronics and CTAB as small templates. Thereby, the study provided also general insights into the mixing and co-self-assembly behavior of block copolymers and ionic surfactants in water and confirmed the special templating properties of ILs, as recently proposed. In addition to the bimodal mesoporosity, additional tunable macroporosity was created by the presence of poly(styrene) or poly(methyl methacrylate) spheres, leading to well-defined trimodal hierarchical pore architectures with the small pores being located in the walls of the respective larger pores. As a major improvement, due to the pore hierarchy, these large-pore materials showed relatively large surface areas and pore volumes, and the size of densely packed macropores could even be decreased down to 90 nm. The materials were characterized by electron microscopy, small-angle X-ray scattering, and nitrogen sorption using a proper NLDFT (nonlocal density functional theory) approach for calculations of the pore size distribution in the entire range of micro- and mesopores.  相似文献   

8.
Changes in density and surface tension of water in silica pores   总被引:3,自引:0,他引:3  
 The density and surface tension of water in small pores of silicas have been investigated. These physical properties of water in the pores were calculated from a comparison of pore volumes and pore radii which were estimated from adsorption and desorption isotherms of nitrogen and water. Below a pore radius of about 5 nm both the density and the surface tension of water in the pores were smaller than those of the bulk liquid and decreased with a decrease in pore size. The density of water in the pores decreased with an increase in the concentration of surface hydroxyl groups. Similarly the surface tension of water in the pores is influenced by the surface hydroxyl groups. Anomalous changes in the density and surface tension of the water in the pores are attributed to the interaction of water molecules with surface hydroxyl groups and hydrogen-bond formation among water molecules. Received: 20 April 1999 Accepted in revised form: 17 November 1999  相似文献   

9.
The transport behavior of toluene and n-hexane in gamma-alumina membranes with different pore diameters was studied. It was shown that the permeability of water-lean hexane and toluene is in agreement with Darcy's law down to membrane pore diameters of 3.5 nm. The presence of molar water fractions of 5-8 x 10(-4) in these solvents led to a permeability decrease of the gamma-alumina layer by a factor of 2-4 depending on pore size. In general, a lower permeability was found for hexane than for toluene. Moreover, in the presence of water a minimum applied pressure of 0.5-1.5 bar was required to induce net liquid flow through the membrane. These phenomena were interpreted in terms of capillary condensation of water in membrane pores with a size below a certain critical diameter. This is thought to lead to substantial blocking of these pores for transport, so that the effective tortuosity of the membrane for transport of hydrophobic solvents increases.  相似文献   

10.
A simple explanation is given for the low-temperature density minimum of water confined within cylindrical pores of ordered nanoporous materials of different pore size. The experimental evidence is based on combined data from in-situ small-angle scattering of X-rays (SAXS) and neutrons (SANS), corroborated by additional wide-angle X-ray scattering (WAXS). The combined scattering data cannot be described by a homogeneous density distribution of water within the pores, as was originally suggested from SANS data alone. A two-step density model reveals a wall layer covering approximately two layers of water molecules with higher density than the residual core water in the central part of the pores. The temperature-induced changes of the scattering signal from both X-rays and neutrons are consistent with a minimum of the average water density. We show that the temperature at which this minimum occurs depends monotonically on the pore size. Therefore we attribute this minimum to a liquid-solid transition of water influenced by confinement. For water confined in the smallest pores of only 2 nm in diameter, the density minimum is explained in terms of a structural transition of the surface water layer closest to the hydrophilic pore walls.  相似文献   

11.
The infrared spectra of water confined in well controlled pore glasses were recorded as a function of the pore size ranging from 8 to 320 nm and in the 30-4000 cm(-1) spectral range using the ATR technique. The experiments prove that even in the large pores, the water network is significantly perturbed. The energy of the connectivity (or hindered translation) band (around 150 cm(-1)) is found to increase when the pore size decreases, indicating that confinement increases the H-bonding between neighbouring water molecules. Moreover, a drastic decrease of the FWHM of the connectivity band was observed upon confinement. This can be related to some ordering induced by the rigid walls of the pores. Furthermore, the partial filling of pores causes a significant modification to the water network, resembling heating of the trapped liquid and suggesting a role played by the water/air interface.  相似文献   

12.
Both nitrogen-doping feature and pore structure are critical factors for developing nitrogen-doped carbons based catalysts with a high performance toward oxygen reduction reaction(ORR).Herein,a simple one-step CVD of acetylene and acetonitrile vapor method using silanized SBA-15 as a template has been developed to synthesize an ordered porous carbon(OPC) with dual nitrogen-doped interfaces.The optimized sample as prepared with the CVD of 4 h at 750℃ contains two types of ordered mesopores that one type is the ordered cylindrical pores inheriting from the pores of SBA-15 and has a pore width of4.0~5.0 nm,the other type is the ordered quasi-hexagonal pores with a width of 3.0~4.0 nm produced by etching the pore walls of SBA-15.These two types of pores whose pore walls are built by the nitrogen doped carbon layers resulted by the CVD and thus it actually makes the dual nitrogen-doped interfaced OPC(DN-OPC).Meanwhile,DN-OPC contains a few of micropores and a large SSA of 1430 m~2/g.This dualordered pores and dual nitrogen-doped interfaces cannot only facilitate mass transport but also utilize the active sites of DN-OPC for ORR.Therefore,as metal-free ORR catalyst,DN-OPC exhibits a good activity close to commercial Pt/C catalyst,and an excellent durability and methanol tolerance.  相似文献   

13.
The effect of various salts on the viscosity, and by implication structure, of water in polymeric membrane pores of radius approximately 1.69 nm and low charge density has been studied. Permeation of pure water and various electrolyte solutions was analyzed using the Hagen-Poiseuille equation expressed in a ratio form to exclude membrane-specific quantities such as pore radius and length. The analysis produced viscosity ratios of electrolyte to pure water inside the membrane pores. Comparing the viscosity ratios inside the pores with their bulk counterparts showed that confinement significantly increased the sensitivity of water structure to the presence of ions. It has been found that, in relative terms in the pores, Cl- was a strong structure breaker, K+ was a moderately strong structure breaker, Na+ was a weak structure breaker, SO4(2-) was a weak structure maker, and Mg2+ was a strong structure maker. Predictive modeling of membrane separation performance would benefit from such effects being taken into account in cases where the pore ion concentrations may be high.  相似文献   

14.
Macroporous poly(glycidyl methacrylate-ethylene dimethacrylate) [P(GMA-EDMA)] particles with pore size around 140-200 nm and poly(glycidyl methacrylate-divinylbenzene) [P(GMA-DVB)] particles with pore size of 450 nm were prepared by the surfactant reverse micelles swelling method. This method was similar with the conventional suspension polymerization, and the difference was that higher concentration of surfactant was added in the oil phase. When the oil phase containing surfactant was dispersed in aqueous phase, the surfactant reverse micelles in the oil droplets absorbed water from continuous phase. After polymerization, the large pores were formed by the absorbed water. The effects of the amount and type of surfactants, the cooperation of surfactant and diluents, and the crosslinking agent on the morphology of microspheres were investigated. This study provided a new and simple method to prepare microspheres with the pores of several hundred nanometers, which overcame the disadvantages found in the conventional preparation methods of macroporous microspheres.  相似文献   

15.
Studies on confined water are important not only from the viewpoint of scientific interest but also for the development of new nanoscale devices. In this work, we aimed to clarify the properties of confined water in the cylindrical pores of single-walled carbon nanotubes (SWCNTs) that had diameters in the range of 1.46 to 2.40 nm. A combination of x-ray diffraction (XRD), nuclear magnetic resonance, and electrical resistance measurements revealed that water inside SWCNTs with diameters between 1.68 and 2.40 nm undergoes a wet-dry type transition with the lowering of temperature; below the transition temperature T(wd), water was ejected from the SWCNTs. T(wd) increased with increasing SWCNT diameter D. For the SWCNTs with D = 1.68, 2.00, 2.18, and 2.40 nm, T(wd) obtained by the XRD measurements were 218, 225, 236, and 237 K, respectively. We performed a systematic study on finite length SWCNT systems using classical molecular dynamics calculations to clarify the effect of open ends of the SWCNTs and water content on the water structure. It was found that ice structures that were formed at low temperatures were strongly affected by the bore diameter, a = D - σ(OC), where σ(OC) is gap distance between the SWCNT and oxygen atom in water, and the number of water molecules in the system. In small pores (a < 1.02 nm), tubule ices or the so-called ice nanotubes (ice NTs) were formed irrespective of the water content. On the other hand, in larger pores (a > 1.10 nm) with small water content, filled water clusters were formed leaving some empty space in the SWCNT pore, which grew to fill the pore with increasing water content. For pores with sizes in between these two regimes (1.02 < a < 1.10 nm), tubule ice also appeared with small water content and grew with increasing water content. However, once the tubule ice filled the entire SWCNT pore, further increase in the water content resulted in encapsulation of the additional water molecules inside the tubule ice. Corresponding XRD measurements on SWCNTs with a mean diameter of 1.46 nm strongly suggested the presence of such a filled structure.  相似文献   

16.
The freezing mechanism of water contacted with mesoporous silicas with uniform pore shapes, both cylindrical and cagelike, was studied by thermodynamic and structural analyses with differential scanning calorimetry (DSC) and X-ray diffraction (XRD) together with adsorption measurements. In the DSC data extra exothermic peaks were found at around 230 K for water confined in SBA-15, in addition to that due to the freezing of pore water. These peaks are most likely to be ascribed to the freezing of water present over the micropore and/or mesopore outlets of coronas in SBA-15. Freezing of water confined in SBA-16 was systematically analysed by DSC with changing the pore size. The freezing temperature was found to be around 232 K, close to the homogeneous nucleation temperature of bulk water, independent of the pore size when the pore diameter (d) < 7.0 nm. Water confined in the cagelike pores of SBA-16 is probably surrounded by a water layer (boundary water) at the outlets of channels to interconnect the pores and of fine corona-like pores, which is similar to that present at the outlet of cylindrical pores in MCM-41 and of cylindrical channels in SBA-15. The presence of the boundary water would be a key for water in SBA-16 to freeze at the homogeneous nucleation temperature. This phenomenon is similar to those well known for water droplets in oil and water droplets of clouds in the sky. The XRD data showed that the cubic ice I(c) was formed in SBA-16 as previously found in SBA-15 when d < 8.0 nm.  相似文献   

17.
贫水电解质体系制备多孔阳极氧化铝模板的研究   总被引:3,自引:0,他引:3  
在有机溶剂为主的含草酸电解质中,研究了大孔径有序度高的阳极氧化铝(AAO)的一步法电化学制备.实验证实,电解质中水含量的降低能够有效抑制铝的电氧化速率和溶解速率,使得其氧化膜孔道的生长能够稳定进行,所得到的六方孔道排列有序度明显高于纯水溶剂制备的电解质体系下的产物.考察了水含量、有机溶剂种类以及电解质浓度对AAO模板孔道形貌的影响.结果表明,有机溶剂贫水电解质体系使得电氧化电压的选取范围比水溶液电解质体系更宽,孔径连续可调,反应条件温和.该方法适合于制备均匀大孔径的AAO模板.  相似文献   

18.
以SiO_2/Al_2O_3物质的量比为50的HZSM-5分子筛为原粉,经过一定浓度的NaOH溶液处理后再使用柠檬酸溶液进行酸洗以制备微孔-介孔多级孔HZSM-5催化剂,并研究其在模拟油中的噻吩烷基化反应性能。结果表明,使用柠檬酸溶液进行酸洗可以清除碱处理后孔道内残余的杂质。当柠檬酸溶液浓度为0.5 mol/L时,此时得到的HZ(AC-0.5)催化剂具有适宜的孔径和酸性,因而噻吩烷基化转化率最高,达到95.6%。在HZ(AC-0.5)催化剂上以苯并噻吩作为噻吩衍生物模型化合物,异戊二烯作为烯烃模型化合物,苯作为芳烃模型化合物,分别考察噻吩烷基化反应性能,并分析不同组分的模拟油对噻吩烷基化反应转化率和选择性的影响。结果表明,噻吩烷基化的最佳反应温度是120℃,在该温度下苯并噻吩烷基化的转化率高于噻吩烷基化的转化率,当异戊二烯作为烯烃模型化合物后噻吩的转化率会升高,当苯作为芳烃模型化合物后噻吩的转化率会降低。  相似文献   

19.
We have fabricated a molecular recognition ion gating membrane. This synthetic membrane spontaneously opens and closes its pores in response to specific solvated ions. In addition to this switching function, we found that this membrane could control its pore size in response to a known concentration of a specific ion. The membrane was prepared by plasma graft copolymerization, which filled the pores of porous polyethylene film with a copolymer of NIPAM (N-isopropylacrylamide) and BCAm (benzo[18]crown-6-acrylamide). NIPAM is well-known to have an LCST (lower critical solution temperature), at which its volume changes dramatically in water. The crown receptor of the BCAm traps a specific ion, and causes a shift in the LCST. Therefore, selectively responding to either K(+) or Ba(2+), the grafted copolymer swelled and shrank in the pores at a constant temperature between two LCSTs. The solution flux in the absence of Ba(2+) decreased by about 2 orders of magnitude over a solution flux containing Ba(2+). The pore size was estimated by the filtration of aqueous dextran solutions with various solute sizes. This revealed that the membrane changed its pore size between 5 and 27 nm in response to the Ba(2+) concentration changes. No such change was observed for Ca(2+) solutions. Furthermore, this pore size change occurred uniformly in all pores, as a clear cut-off value for a solute size that could pass through pores was always present. This membrane may be useful not only as a molecular recognition ion gate, but also as a device for spontaneously controlling the permeation flux and solute size.  相似文献   

20.
This study deals with the use of ethanol as washing solvent in the preparation of the silica gels from sodium silicate in order to enhance the textural properties, especially surface area. We here examined the effect of ethanol-washing on surface area, micro- and mesopore volume, and average pore size. The silica xerogels prepared from sodium silicate solution exhibited an extremely high surface area of 1139 m2/g by washing their hydrogels with ethanol. Compared to water-washed xerogels, ethanol-washed xerogels showed higher surface areas, total pore volumes, and larger average pore sizes. Unlike the surface area of water-washed xerogel, that of the ethanol-washed xerogel was not affected by the silica concentration of initial solution. This study indicates that the textural properties of sodium silicate-derived xerogels are further enhanced by using ethanol as washing solvent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号