首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We obtain exact ground states of an extended periodic Anderson model (EPAM) with non-local hybridization and Coulomb repulsion between f and c electrons (Falicov-Kimball term) in one dimension. We show that for a range of parameter values these ground states exhibit composite hole pairing and superconductivity that originate from purely electronic interactions.  相似文献   

2.
A special diagram technique recently proposed for strongly correlated electron systems is used to study the peculiarities of a spin-density wave (SDW) in competition with superconductivity. This method allows formulation of the Dyson equations for the renormalized electron propagators of the co-existing phases of SDW antiferromagnetism and superconductivity. We find the surprising result that triplet superconductivity appears provided that we have the co-existence of singlet superconductivity and SDW antiferromagnetism. A special ansatz, which takes into account the full Green's functions as well as the dynamical structure of the correlations, is used to establish the equations determining the gap functions and order parameters.  相似文献   

3.
While consequences of frustration of magnetic interactions are much studied in localized spin systems, much less studies have been performed on frustrated metallic systems. However, several effects of strong geometrical frustration in metallic correlated system have also been experimentally observed in rare-earth or transition metal compounds: coexistence of magnetic and non-magnetic sites in ordered magnetic structure, heavy fermion behaviour and anomalous Hall effect due to spin chirality are consequences of frustration. An overview of the experimental observations and of the proposed models is given. Other interesting effects due to magnetic frustration in metallic systems, which have been predicted theoretically, are also reviewed.  相似文献   

4.
We present the Fermi surface properties in strongly correlated electron systems of rare earth and uranium compounds via de Haas–van Alphen experiments. The conduction electrons with large cyclotron effective masses over 100m0 (m0: rest mass of an electron) are detected in CeRu2Si2, CeCoIn5 and UPt3. These electrons move slowly in the crystal. The topology of the Fermi surface and the cyclotron mass are compared to those of energy band calculations.  相似文献   

5.
It is shown that strongly correlated electrons on frustrated lattices like pyrochlore, checkerboard or kagomè lattice can lead to the appearance of closed and open strings. They are resulting from nonlocal subsidiary conditions which propagating strongly correlated electrons require. The dynamics of the strings is discussed and a number of their properties are pointed out. Some of them are reminiscent of particle physics.  相似文献   

6.
7.
We investigate one-dimensional strongly correlated electron models which have the resonating-valence-bond state as the exact ground state. The correlation functions are evaluated exactly using the transfer matrix method for the geometric representations of the valence-bond states. In this method, we only treat matrices with small dimensions. This enables us to give analytical results. It is shown that the correlation functions decay exponentially with distance. The result suggests that there is a finite excitation gap, and that the ground state is insulating. Since the corresponding noninteracting systems may be insulating or metallic, we can say that the gap originates from strong correlation. The persistent currents of the present models are also investigated and found to be exactly vanishing.  相似文献   

8.
9.
10.
11.
12.
Zhe Chang 《Il Nuovo Cimento D》1996,18(9):1087-1097
Summary By making use of the Abelian bosonization procedure, we obtain a Coulomb-gas picture of the continuum limit of the one-dimensional Hubbard model. It is shown clearly that the semi-direct product of two Virasoro algebras (c=1) denotes symmetry of excitations of the Hubbard model. A systematic study of modular invariant partition function for the Hubbard model is presented. Correlation functions are calculated explicitly and the result is in good agreement with those of numerical simulations and Tomonaga-Luttinger model.  相似文献   

13.
We study fermion correlators in a holographic superfluid with a d-wave (spin two) order parameter. We find that, with a suitable bulk Majorana coupling, the Fermi surface is anisotropically gapped. At low temperatures the gap shrinks to four nodal points. At high temperatures the Fermi surface is partially gapped generating four Fermi arcs.  相似文献   

14.
We present a technique to map an electronic model with local interactions (a generalized multi-orbital Hubbard model) onto an effective model of interacting classical spins, by requiring that the thermodynamic potentials associated to spin rotations in the two systems are equivalent up to second order in the rotation angles, when the electronic system is in a symmetry-broken phase. This allows to determine the parameters of relativistic and non-relativistic magnetic interactions in the effective spin model in terms of equilibrium Green’s functions of the electronic model. The Hamiltonian of the electronic system includes, in addition to the non-relativistic part, relativistic single-particle terms such as the Zeeman coupling to an external magnetic field, spin–orbit coupling, and arbitrary magnetic anisotropies; the orbital degrees of freedom of the electrons are explicitly taken into account. We determine the complete relativistic exchange tensors, accounting for anisotropic exchange, Dzyaloshinskii–Moriya interactions, as well as additional non-diagonal symmetric terms (which may include dipole–dipole interaction). The expressions of all these magnetic interactions are determined in a unified framework, including previously disregarded features such as the vertices of two-particle Green’s functions and non-local self-energies. We do not assume any smallness in spin–orbit coupling, so our treatment is in this sense exact. Finally, we show how to distinguish and address separately the spin, orbital and spin–orbital contributions to magnetism, providing expressions that can be computed within a tight-binding Dynamical Mean Field Theory.  相似文献   

15.
A first report of physical properties of the ternary intermetallic compound CeRu2Al10 is given. The electrical resistivity below room temperature shows activated behaviour with a narrow gap of before the onset of a sharp peak in ρ(T) below . The Hall coefficient as well as the thermoelectric power are overall positive, and both increase in a similarly sharp manner below T*. The lattice part of the thermal conductivity indicates phonon coupling of the heat transport at T*, possibly underlying a lattice transformation that accompanies the putative metal-to-insulator and magnetic phase transitions.  相似文献   

16.
Optical and spectral properties of carriers in the presence of strong antiferromagnetic correlations and interacting with optical phonon modes are analyzed using Dynamical Mean Field Theory. We interpret the mid-infrared band in σ(ω) in term of mixed spin lattice polaronic excitations which arise from the stabilization of the lattice polaron due to the antiferromagnetic correlations. We compare our results with experimental data in NCCO showing that the doping and temperature dependences of the optical conductivity in this compound is naturally reproduced within a spin/lattice polaronic model.  相似文献   

17.
A new model for correlated electrons is presented which is integrable in one-dimension. The symmetry algebra of the model is the Lie superalgebra gl(2|1) which depends on a continuous free parameter. This symmetry algebra contains the pairing algebra as a subalgebra which is used to show that the model exhibits Off-Diagonal Long-Range Order in any number of dimensions. Received: 9 December 1997 / Revised: 12 February 1998 / Accepted: 17 March 1998  相似文献   

18.
V. Balédent 《高压研究》2016,36(3):371-380
ABSTRACT

We report here on the application of Resonant Inelastic X-ray Scattering (RIXS) in correlated electrons systems under pressure. Thanks to its bulk sensitivity and superior resolving power, RIXS appears as a powerful spectroscopic technique to unravel the local electronic and magnetic properties of materials at extreme conditions. The method is illustrated in vanadium-oxides- and Fe-based superconductors at high pressure.  相似文献   

19.
Taking the site-diagonal terms of the ionic Hubbard model (IHM) in one and two spatial dimensions, as H0, we employ Continuous Unitary Transformations (CUT) to obtain a “classical” effective Hamiltonian in which hopping term has been renormalized to zero. For this Hamiltonian spin gap and charge gap are calculated at half-filling and subject to periodic boundary conditions. Our calculations indicate two transition points. In fixed Δ, as U increases from zero, there is a region in which both spin gap and charge gap are positive and identical; characteristic of band insulators. Upon further increasing U, first transition occurs at U=Uc1, where spin and charge gaps both vanish and remain zero up to U=Uc2. A gap-less state in charge and spin sectors characterizes a metal. For U>Uc2 spin gap remains zero and charge gap becomes positive. This third region corresponds to a Mott insulator in which charge excitations are gaped, while spin excitations remain gap-less.  相似文献   

20.
We study the influence of the short-ranged Hubbard correlation U between the conduction electrons on the Cooper pair formation in normal (s-wave) superconductors. The Coulomb correlation is considered within the standard second order perturbation theory, which becomes exact in the weak coupling limit but goes beyond the simple Hartree-Fock treatment by yielding a finite lifetime of the quasiparticles at finite temperature. An attractive pairing interaction V, which may be mediated by the standard electron-phonon mechanism, is considered between nearest neighbor sites. A critical value for the attractive interaction is required to obtain a superconducting state. For finite temperature a gapless superconductivity is obtained due to the finite lifetime of the quasiparticles, i.e. the Coulomb correlation has a pair-breaking influence. The energy gap and depend very sensitively on U, V and band filling n and develop a maximum away from half filling as function of n. The ratio varies with n, being higher than the BCS value near half filling and reaching the BCS value for lower n. Received 17 February 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号