首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Hou J  Xie W  Chen X  Xi J  Qian Y  Wang F  Liu H 《色谱》2011,29(6):535-542
建立了采用固相萃取-液相色谱-质谱/质谱(SPE-LC-MS/MS)对蜂蜜中磺胺类、硝基咪唑类、喹诺酮类、大环内酯类、林可酰胺类和吡喹酮共计6大类54种药物残留同时测定的方法。蜂蜜经磷酸盐缓冲溶液(pH 8)稀释,Oasis HLB固相萃取柱净化后,通过液相色谱-质谱联用技术进行检测(正离子方式,多反应监测模式)。采用同位素稀释内标法或外标法进行定量,线性关系良好,相关系数大于0.992。方法的定量限(LOQ,以信噪比(S/N)大于10计)分别为磺胺类和硝基咪唑类药物1.0 μg/kg,喹诺酮类和林可酰胺类药物2.0 μg/kg,大环内酯类药物3.0 μg/kg,吡喹酮0.3 μg/kg。总体回收率为32.6%~114%,相对标准偏差为1.3%~28.9%。该方法的定量限满足目前国内外药物的最大残留限量要求,可作为蜂蜜中相关药物残留量的筛选检测方法。  相似文献   

2.
A rapid, accurate LC analytical method has been developed for determination of eight sulfonamides (sulfacetamide, sulfapyridine, sulfamerazine, sulfamethoxypyridazine, sulfameter, sulfachloropyridazine, sulfamethoxazole and sulfadimethoxine) in honey. The sample was dissolved in phosphoric acid solution (pH 2). After filtration, the sample solution was cleaned by use of two solid-phase extraction (SPE) cartridges-an aromatic sulfonic cation-exchange cartridge and an Oasis HLB cartridge. The eight sulfonamides were then derivatized with fluorescamine and the derivatives were determined by LC with fluorescence detection at excitation and emission wavelengths of 405 and 495 nm, respectively. Average recoveries at three fortification levels in the range 0.02-0.50 mg kg(-1) in twelve different kinds of honey were 73.5-94.1% with coefficients of variation of 4.35-16.60%. The limit of detection (LOD) was 0.002 mg kg(-1) for sulfacetamide, sulfapyridine, sulfamerazine, and sulfamethoxypyridazine; that for sulfameter, sulfachloropyridazine, sulfamethoxazole and sulfadimethoxine was 0.005 mg kg(-1). The limit of quantitation (LOQ) was 0.005 mg kg(-1) for sulfacetamide, sulfapyridine, sulfamerazine, and sulfamethoxypyridazine; that for sulfameter, sulfachloropyridazine, sulfamethoxazole, and sulfadimethoxine was 0.010 mg kg(-1). The method is suitable for determination of multiresidue sulfonamides in the various kinds of honey.  相似文献   

3.
魏莉莉  薛霞  刘艳明  孙立臻  程志  宿书芳  赵寅 《色谱》2019,37(7):735-741
建立了亲水作用色谱-串联质谱(HILIC-MS/MS)测定蜂蜜中链霉素和双氢链霉素的分析方法。样品中链霉素和双氢链霉素经20 g/L三氯乙酸水溶液(含50 mmol/L磷酸盐,pH 6.8)提取,HLB固相萃取柱净化,采用HILIC-MS/MS对目标物进行定性和定量分析。采用SIELC Obelisc R色谱柱,以0.5%(体积分数)甲酸水溶液和乙腈为流动相进行梯度洗脱分离,在正离子模式下检测,外标法定量。该方法在2.5~100 μg/L范围内线性关系良好(r>0.99),检出限(LOD)为2.0 μg/kg,定量限(LOQ)为5.0 μg/kg。在空白蜂蜜样品中进行5.0、20.0、100.0 μg/kg 3个水平的加标回收试验,方法的平均回收率为86.9%~113.2%,精密度在10%以下。该方法简单、快速、灵敏,重复性好,可用于蜂蜜中链霉素和双氢链霉素的定量测定。  相似文献   

4.
A rapid and sensitive method for the determination of 4-fluoro-3-phenoxybenzaldehyde cyanohydrin (FPBC) and 4-fluoro-3-phenoxy-benzaldehyde (FPB) in honey samples using ultrasonically assisted extraction and gas chromatography with electron capture detection (GC-ECD) has been developed. The different factors affecting the efficiency of the extraction were carefully optimized. The honey sample was extracted with a mixture of hexane and dichloromethane (v/v, 1:1) utilizing the ultrasonically assisted technique and cleaned up by solid-phase extraction on Oasis HLB cartridges. The eluate was evaporated to dryness and residues were reconstituted to 1.0 mL with hexane and determined by GC-ECD. The calibration curves of fortified samples showed acceptable linear response (R(2) >0.99) over a range of 3-100 ng/g for FPBC and FPB in seven replicate determinations of six concentrations, respectively, and analysis of variance (ANOVA) with a lack-of-fit test was performed to validate the regression data. Overall average recoveries ranged from 90.9 to 106.2% for honey samples. The detection limits were 0.9 ng/g for FPBC and 1.0 ng/g for FPB, respectively. This method can be successfully applied to routine determination of two degradation products of flumethrin in honey samples.  相似文献   

5.
以对羟基苯甲酸(p-HBA)为模板分子,丙烯酰胺(AM)为功能单体,乙二醇二甲基丙烯酸酯为交联剂,采用沉淀聚合法在乙腈溶剂中制备了p-HBA印迹聚合物微粒,研究了p-HBA加入量及聚合反应体系的总浓度对印迹聚合物结合性能的影响,采用色谱法对其进行了评价。结果表明,p-HBA的加入量及反应体系的总浓度对结合性能均有影响,当p-HBA加入量为1.0 mmol(与AM物质的量比为1:2)时,在37.5 mL乙腈中制得印迹聚合物P2对p-HBA具有高的亲和力(k'=4.01)和选择性。将印迹聚合物P2作为固相萃取填料,研究了分子印迹固相萃取p-HBA的方法,测得2种不同载样模式下p-HBA的柱容量分别为6.91 μg/100 mg和1.93 μg/100 mg,测得天麻样品中p-HBA的加标回收率为76.8%~86.6%(RSD=3.4%~6.2%)(n=3)。结果表明,采用沉淀聚合法以AM为功能单体制备的p-HBA印迹聚合物微粒适宜作为固相萃取填料,可实现天麻样品中p-HBA的选择性分离净化。  相似文献   

6.
A determination method has been optimized and validated for the simultaneous analysis of tetracycline (TC), oxytetracycline (OTC), chlortetracycline (CTC) and doxycycline (DC) in honey. Tetracyclines (TCs) were removed from honey samples by chelation with metal ions bound to small Chelating Sepharose Fast Flow columns and eluted with Na2EDTA-Mcllvaine pH 4.0 buffers. Extracts were further cleaned up by Oasis HLB solid-phase extraction (SPE), while other solid-phase extraction cartridges were compared. Chromatographic separation was achieved using a polar end-capped C 18 column with an isocratic mobile phase consisting of oxalic acid, acetonitrile and methanol. LC with ultraviolet absorbance at 355 nm resulted in the quantitation of all four tetracycline residues from honey samples fortified at 15, 50, and 100 ng/g, with liner ranges for tetracyclines of 0.05 to 2 μg/mL. Mean recoveries for tetracyclines were greater than 50% with R.S.D. values less than 10% (n= 18). Detection limits of 5, 5, 10, 10 ng/g for oxytetracycline, tetracycline, chlortetracycline and doxycycline, respectively and quantitation limits of 15 ng/g for all the four tetracyclines were determined. Direct confirmation of the four residues in honey (2-50 ng/g) was realized by liquid chromatography-tandem mass spectrometry (LC/MS/MS). The linear ranges of tetracyclines determined by LC/MS/MS were between 5 to 300 ng/mL, with the linear correlation coefficient r〉 0.995. The limits of detection of 1 to 2 ng/g were obtained for the analysis of the TCs in honey.  相似文献   

7.
A sensitive and rapid derivatization method for the simultaneous determination of 1,3-dichloro-2-propanol (1,3-DCP) and 3-chloropropane-1,2-diol (3-MCPD) in water samples has been developed. The aim was to research the optimal conditions of the derivatization process for two selected reagents. A central composite design was used to determine the influence of derivatization time, derivatization temperature and reagent volume. A global desirability function was applied for multi-response optimization. The analysis was performed by gas chromatography-mass spectrometry. During the optimization of the extraction procedure, four different types of solid-phase extraction (SPE) columns were tested. It was demonstrated that the Oasis HLB cartridge produced the best recoveries of the target analytes. The pH value and the salinity were investigated using a Doehlert design. The best results for the SPE of both analytes were obtained with 1.5 g of NaCl and pH 6. The proposed method provides high sensitivity, good linearity (R(2)≥0.999) and repeatability (relative standard deviations % between 2.9 and 3.4%). Limits of detection and quantification were in the range of 1.4-11.2 ng/mL and 4.8-34.5 ng/mL, respectively. Recoveries obtained for water samples were ca. 100% for 1,3-DCP and 3-MCPD. The method has been successfully applied to the analysis of different samples including commercially bottled water, an influent and effluent sewage.  相似文献   

8.
侯建波  谢文  钱艳  史颖珠  陆顺  盛涛  陈文彬 《色谱》2020,38(5):529-537
建立了固相萃取净化-液相色谱-串联质谱法(SPE-LC-MS/MS)同时测定蜂蜜中芦丁、杨梅素、桑黄素、槲皮素、柚皮素、橙皮素、木犀草素、染料木素、山柰酚、异鼠李素、芹菜素、松属素、汉黄芩素、白杨素、高良姜素、芫花素和阿魏酸含量的方法。蜂蜜经pH 2的盐酸溶液稀释,C18固相萃取柱净化,液相色谱-串联质谱法检测,外标法定量。以空白蜂蜜基质溶液配制0~200 μg/kg的系列标准溶液,线性相关系数大于0.997,方法定量限为20 μg/kg。在蜂蜜样品中进行加标水平为20、40、100 μg/kg的添加回收试验,回收率为64.5%~113%,相对标准偏差为1.4%~14.5%。该方法取样量少、操作简便、快捷,可用于蜂蜜中黄酮类化合物的测定。  相似文献   

9.
An analytical procedure using supercritical fluid extraction (SFE) and capillary gas chromatography with electron-capture detection was developed to determine simultaneously residues of different pesticides (organochlorine, organophosphorus, organonitrogen and pyrethroid) in honey samples. Fortification experiments were conducted to test conventional extraction (liquid-liquid) and optimize the extraction procedure in SFE by varying the CO2-modifier, temperature, extraction time and pressure. Best efficiency was achieved at 400 bar using acetonitrile as modifier at 90 degrees C. For the clean-up step, Florisil cartridges were used for both methods LLE and SFE. Recoveries for majority of pesticides from fortified samples of honey at fortification level of 0.01-0.10 mg/kg ranged 75-94% from both methods. Limits of detection found were less than 0.01 mg/kg for ECD and confirmation of pesticide identity was performed by gas chromatography-mass spectrometry in selected-ion monitoring mode. The multiresidue methods in real honey samples were applied and the results of developed methods were compared.  相似文献   

10.
A method is described for the determination of 16 sulfonamides in honey. Samples are dissolved in phosphoric acid solution (pH2), cleaned up with 2 solid-phase extraction (SPE) cartridges, an aromatic sulfonic cation-exchange cartridge and an Oasis HLB SPE cartridge, and analyzed both qualitatively and quantitatively by liquid chromatography/tandem mass spectrometry (LC/MS/MS) under the selected conditions. Without exception, calibration curves were linear (r = > 0.995), when sulfamethizole was between 1.0 and 25.0 microg/kg; sulfacetamide, sulfapyridine, sulfadiazine, sulfachloropyridazine, sulfamethoxazole, sulfamerazine, sulfisoxazole, sulfamonomethoxine, and sulfadoxine were between 2.0 and 50.0 microg/kg; sulfamethoxypyridazine, sulfadimethoxine, and sulfathiazole were between 4.0 and 100.0 microg/kg; sulfamethazine and sulfameter were between 8.0 and 200.0 microg/kg; and sulfaphenazole was between 12.0 and 300.0 microg/kg. Average recoveries at 4 fortification levels in the range of 1.0-300 microg/kg in honey were 70.9-102.5%, and relative standard deviations were 2.02-11.52%. The limits of quantitation for the 16 sulfonamides were between 1.0 and 12.0 microg/kg, with the LC/MS/MS method.  相似文献   

11.
A rapid high-performance liquid chromatographic method for the determination of organic acids in honey is reported. Malic, maleic, citric, succinic and fumaric acids were identified and quantified in 15 min. First time repeatibility, reproducibility and recoveries were determined out for these acids in honey samples. Maleic acid was also quantified for first time by a chromatographic method. The organic acids were removed from honey by using a solid-phase extraction procedure with anion-exchange cartridges. Previously, the solution of honey was adjusted to pH 10.50 with 0.1 M NaOH and stirred for 15 min at room temperature. Then, this solution was adjusted to pH 5.00 with 0.1 M H2SO4. This procedure was carried out to avoid interferences in the baseline. The chromatographic separation was achieved with only one Spherisorb ODS-2 S5 column thermostated at 25 degrees C. Metaphosphoric acid (pH 2.20) was used as mobile phase at a flow-rate of 0.7 ml/min. Organic acids were detected with a UV-vis detector (215 nm). The precision results showed that the relative standard deviations of the repeatability and reproducibility were < or =3.20% and < or =4.86%, respectively. The recoveries of the organic acids ranged from 62.9 to 99.4%. Under optimum conditions the detection limits ranged from 0.0064 to 7.57 mg/kg and the quantification limits ranged from 0.025 to 10.93 mg/kg.  相似文献   

12.
As a prerequisite to the determination of pharmacokinetic parameters of icariin in rats, an HPLC method using UV detection was developed and validated. Icariin and the internal standard, quercetin, were extracted from plasma samples using ethyl acetate after acidification with 0.05 mol/L NaH2PO4 solution (pH 5.0). Chromatographic separation was achieved on an Agilent XDB Cls column (250 x 4.6 mm id, 5 microm) equipped with a Shim-pack GVP-ODS C18 guard column (10 x 4.6 mm id, 5 microm) using a mobile phase of ACN/water/acetic acid (31:69:0.4 v/v/v) at a flow rate of 1.0 mL/ min. Detection was at 277 nm. The calibration curve was linear from 0.05 to 100.0 microg/mL with 0.05 microg/mL as the lower LOQ (LLOQ) in plasma. The intra- and interday precisions in terms of RSD were lower than 5.7 and 7.8% in rat plasma, respectively. The accuracy in terms of relative error (RE) ranged from -1.6 to 3.2%. The extraction recoveries of icariin and quercetin were 87.6 and 80.1%, respectively. The main pharmacokinetic parameters for rats were determined after a single intravenous administration of 10 mg/kg icariin: t1/2, 0.562 +/- 0.200 h; AUC0-infinity, 8.73 +/- 2.23 microg x h/mL; CLToT, 20.10 +/- 5.80 L/kg x h; Vz, 1.037 +/- 0.631 L/kg; MRT0-infinity, 0.134 +/- 0.040 h; and Vss, 0.170 +/- 0.097 L/kg.  相似文献   

13.
We developed a rapid and efficient means of determining residues of four nitroimidazoles-i.e., dimetridazole, ipronidazole, metronidazole, and ronidazole-and three hydrophilic metabolites- i.e., 2-hydroxymethyl-1-methyl-5-nitroimidazole, 1 -methyl-2-(2'-hydroxyisopropyl)-5-nitroimidazole, and 1-(2-hydroxyethyl)-2-hydroxymethyl-nitroimidazole--in honey. We applied a QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) procedure improved to suit a nitroimidazole analysis, which is fast (approximately 30 min) and uses less organic solvent. The procedure involves initial single-phase extraction of 5 g of honey with acetonitrile containing 1% acetic acid, followed by liquid-liquid partitioning involving the addition of 5 g sodium chloride, 1.5 g trisodium citrate dihydrate, and 4 g magnesium sulfate. Moreover, matrix from honey was reduced by an SPE method with an alumina-N cartridge. The samples were analyzed using LC/MS/MS. Chromatographic separation of these nitroimidazoles and metabolites was performed in the gradient mode on a pentafluorophenylpropyl-bonded silica column (150x2.0 mm, 3 pm particle size) at 40 degrees C. The mobile phase consisted of a 0.01% acetic acid solution and acetonitrile, and the flow rate was 0.2 mL/min. The method was validated using honey spiked with these nitroimidazoles from 0.1 to 0.5 microg/kg. The overall recovery of the seven nitroimidazoles ranged from 76.1 to 98.5%; intra- and interassay CV values were <9.5 and <14.2%, respectively. The LOQ ranged from 0.1 to 0.5 microg/kg. LC/MS/MS coupled with the QuEChERS method showed good potential as a method for determining nitroimidazole residues in honey.  相似文献   

14.
A new, rapid, and efficient method for determining the fumagillin residues in honey was developed. The samples extracted were analyzed using LC/MS/MS. Chromatographic separation of fumagillin was performed in gradient mode on a C8 column (100 x 2.0 mm, 5 microm) at 40 degrees C. The mobile phase consisted of a mixture of 2 mM ammonium formate-0.01% formic acid solution and methanol; the flow rate was set to 0.2 mL/min. Under these conditions, it was possible to measure fumagillin and its isomers as a single peak. The sample preparation procedure used is based on the QuEChERS (quick, easy, cheap, effective, rugged, and safe) method, which is fast (approximately 30 min) and uses less organic solvent. The fumagillin was extracted with acetonitrile containing 0.1% formic acid, then purified using a solid-phase extraction method with an Oasis mixed-mode weak anion-exchange cartridge. The overall recovery of fumagillin ranged from 88.1 to 99.4%; the intra- and interassay CVs were <4.5% and <4.9%, respectively. The LOQ was 0.1 microg/kg. LC/MS/MS coupled with the QuEChERS method showed strong potential as a method for determining fumagillin residues in honey.  相似文献   

15.
A liquid chromatography method was developed for the determination of antifungal/antimicrobial proteins Rs-AFP1 and Dm-AMP1 in sandy loam soils. The extraction of these highly basic proteins was achieved by mechanical shaking with aqueous Tris buffer pH 9 containing guanidinium thiocyanate salt (4.1 M), EDTA and nonionic polyoxyethylene 20 cetyl ether, Brij-58 detergent. The extracts were cleaned up on Oasis HLB polymer solid-phase extraction cartridges and quantified by liquid chromatography fluorescence detection based on the fluorescence properties of the tryptophan content of these proteins. The detector response was linear for 0.3-10 microg mL(-1). Procedural recoveries were tested in the range 10-100 mg kg(-1). The limit of quantification was 10 mg kg(-1 )protein in the soil sample representing the lowest validated fortification level. The antifungal proteins were found to be stable in soil extract tested up to 9 days when stored at 4 degrees C.  相似文献   

16.
We have developed a sensitive CE method to determine eight tetracyclines (TCs) (chlortetracycline, demeclocycline, doxycycline, methacycline, minocycline, oxytetracycline, TC, and rolitetracycline (RTC)) in honey samples. The running buffer was 150 mM sodium borate (pH 9.8) and 2.5% 2-propanol with 15 s hydrodynamic injection at 25 kV. We have also developed an SPE procedure with a C18 cartridge as a clean-up step. Analytes were detected at 360 nm in less than 16 min. LODs ranged in honey from 23.9 microg/kg for TC to 49.3 microg/kg for RTC. Seven samples of Spanish honey of different floral origins were examined. None of them showed contamination with these antibiotics using the proposed method.  相似文献   

17.
Bioactive molecules from the class of polyphenols are secondary metabolites from plants. They are present in honey from nectar and pollen of flowers from where honeybees collect the “raw material” to produce honey. Robinia pseudoacacia and Helianthus annuus are important sources of nectar for production of two monofloral honeys with specific characteristics and important biological activity. A high-performance liquid chromatography–electro spray ionization–mass spectrometry (HPLC–ESI–MS) separation method was used to determine polyphenolic profile from the two types of Romanian unifloral honeys. Robinia and Helianthus honey showed a common flavonoid profile, where pinobanksin (1.61 and 1.94 mg/kg), pinocembrin (0.97 and 1.78 mg/kg) and chrysin (0.96 and 1.08 mg/kg) were identified in both honey types; a characteristic flavonoid profile in which acacetin (1.20 mg/kg), specific only for Robinia honey, was shown; and quercetin (1.85 mg/kg), luteolin (21.03 mg/kg), kaempferol (0.96 mg/kg) and galangin (1.89 mg/kg), specific for Helianthus honey, were shown. In addition, different phenolic acids were found in Robinia and Helianthus honey, while abscisic acid was found only in Robinia honey. Abscisic acid was correlated with geographical location; the samples collected from the south part of Romania had higher amounts, due to climatic conditions. Acacetin was proposed as a biochemical marker for Romanian Robinia honey and quercetin for Helianthus honey.  相似文献   

18.
采用中性解吸电喷雾萃取电离质谱( ND-EESI-MS)技术,在无需样品预处理的条件下,建立了对蜂蜜中敌敌畏直接快速检测的方法。在正离子模式下,敌敌畏质子化离子峰位于 m/z 223,二级特征离子为m/z 109和127。在优化的条件下,以m/z 127的信号强度为定量指标,建立了蜂蜜中敌敌畏残留的定量检测方法。结果表明,在蜂蜜基质中,敌敌畏在5~1000 ng/mL浓度范围内与m/z 127的信号强度线性关系良好,相关系数为0.998,检出限为1.0 ng/mL(S/N=3);蜂蜜中3个加标水平(10,30和400 ng/mL)的敌敌畏的回收率为93.0%~103.0%,精密度(RSDs)小于4.4%。同时采用气相色谱(火焰光度检测器)方法作为对照方法,检测敌敌畏加标蜂蜜样品,结果表明,加标蜂蜜在5~1000 ng/mL浓度范围内与峰面积线性关系良好,相关系数为0.999,检出限为1.6 ng/mL;10,30和400 ng/mL 3个水平加标蜂蜜的回收率为94.9%~110.3%,精密度小于7.6%。  相似文献   

19.
A new LC-ESI-MS method was developed for the determination of residues of the antibacterial tylosins A, B, C and D in honey. The procedure employed an SPE on polymeric cartridges for the isolation of tylosins from diluted honey. Chromatographic separation of the tylosins was performed on a C18 column (150 x 4.60 mm2 ID, 5 microm) using a ternary gradient made of formic acid 1% in water (solvent A), methanol (solvent B) and ACN (solvent C) as mobile phase, at 30 degrees C and at a flow rate of 0.8 mL/min. Average analyte recoveries for the studied compounds ranged from 89 to 106% in replica sets of fortified honey samples. The detection limits for the four drugs studied were between 2 and 3 microg/kg. The developed method has been applied to the analysis of tylosin residues in honey from veterinarian treated beehives fed with the technical product, which contains the four compounds and is a new candidate antibiotic to treat American foulbrood disease of honey bee colonies.  相似文献   

20.
A liquid chromatography method using diode array-fluorescence detection and atmospheric pressure chemical ionization mass spectrometry (LC-DAD-FLD and LC–APCI-MS/MS) was developed to quantify the levels of tryptophan (TRP), kynurenine (KYN), kynurenic (KYNA) and xanthurenic (XA) acids in honey. This procedure involved isolating the compounds of interest via solid-phase extraction (SPE) with mixed-mode polymeric cartridges. Chromatographic separation of the analytes was performed in isocratic mode on a Synergi 4μ Hydro-RP 80Å (150 × 4.60 mm i.d.) analytical column at 30 °C. The mobile phase of 20 mM ammonium formate (pH 4) and methanol was passed at a flow rate of 0.5 mL/min. In replicate sets of spiked honey samples, the average analyte recoveries ranged from 60 to 98% for TRP, 55 to 120% for KYN, 65 to 106.5 for KYNA and 56 to 114% for XA. Detection limits ranged from 4 to 36 μg/kg for LC-DAD-FLD to 0.2 and 1.0 μg/kg for LC–APCI-MS/MS. A strong matrix effect was found when MS/MS was employed, necessitating calibration using the standard addition method on matrix-matched standards for each honey type. The method was used to quantify each of the compounds of interest in 17 honey samples of distinct botanical origins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号