首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 296 毫秒
1.
秦芳  郭彦伸  文辉  杨光中 《化学学报》2009,67(19):2258-2268
近年来的研究表明, 去甲肾上腺素(NE)能系统和5-羟色胺(5-HT)能系统可能共同参与了抑郁症的发病机制. 采用Catalyst软件的Hypogen方法, 利用22个不同结构类型的5-HT重摄取抑制剂和19个不同结构类型和活性的NE重摄取抑制剂分别建立了5-HT药效团模型和NE药效团模型, 它们的相关系数分别为0.935, 0.844, 这表明所得到的模型能较好地表征重摄取抑制剂化合物的特征; 此外, 我们还选择了四种不同活性的预测集分别对所建立的药效团模型进行检验, 结果表明所建立的药效团模型具有较好的预测能力. 对这两个药效团模型进行了比较分析, 其结果可以为设计高活性的双重5-HT和NE重摄取抑制剂提供依据.  相似文献   

2.
基于药效团模型和前期的研究结果, 设计合成了一类全新结构类型的芳基、芳甲基及哌嗪基脒类化合物, 通过1H NMR, HRMS对化合物结构进行了确证, 并完成了初步的体外药理活性评价. 结果表明, 这些化合物均显示出不同程度的5-HT和NE重摄取抑制活性, 其中化合物4b的活性最好, 化合物4a和8a在整体动物抗抑郁药效学实验中表现出明确的抗抑郁活性.  相似文献   

3.
基于药效团模型设计合成新型ALS抑制剂   总被引:1,自引:0,他引:1  
以ALS抑制剂药效团模型为基础建立了提问结构,将药效团模型中的生物结构信息输入到多种小分子三维结构数据库(NCI-3D和ACD-3D数据库)中,分别搜寻出100多个符合特征结构信息的全新结构候选化合物.以这些命中结构的分子特征信息为基础设计合成了一系列新型的ALS抑制剂,初步生物活性测试结果表明,预期有生物活性的化合物显示出一定的ALS酶抑制剂活性.  相似文献   

4.
基于药效团模型的DHODH抑制剂构效关系研究   总被引:1,自引:0,他引:1  
利用药效团模型研究二氢乳清酸脱氢酶(Dihydroorotate dehydrogenase,DHODH)抑制剂的构效关系,为DHODH抑制剂的虚拟筛选提供新的方法.以31个具有DHODH抑制活性的化合物为训练集化合物,半数抑制浓度(IC50)范围为7~63000 nmol/L,利用Catalyst/HypoGen算法构建DHODH抑制剂药效团模型,通过对训练集化合物多个构象进行叠合,提取药效团特征及三维空间限制构建药效团模型.利用基于CatScramble的交叉验证方法及评价模型对已知活性化合物的活性预测能力,确定较优药效团模型.模型包含1个氢键受体、3个疏水中心,表征了受体配体相互作用时可能发生的氢键相互作用、疏水相互作用和π-π相互作用,4个药效特征在三维空间的排列概括了DHODH抑制剂产生活性的结构特点.所得较优模型对训练集化合物及测试集化合物的计算活性值与实验活性值的相关系数分别为0.8405和0.8788.利用药效团模型对来源于微生物的系列化合物进行虚拟筛选,筛选出59个预测活性较好的化合物,可作为进一步药物研发的候选化合物.  相似文献   

5.
5-HT3受体拮抗剂药效团模型的构建   总被引:1,自引:0,他引:1  
以31个来源于MDDR数据库中具有抑制鼠Bezold-Jarisch反射作用的5-HT3受体拮抗剂作为训练集化合物, 构建5-HT3受体拮抗剂药效团模型. 训练集化合物具备结构多样性, 来源于相同药理模型, 活性值ED50范围为0.05~320 μg/kg i.v.. 利用Catalyst计算5-HT3受体拮抗剂的最优药效团由一个氢键受体、一个疏水基团、一个正电离子化基团、一个芳香环特征和6个排除体积组成; Fixed cost值、Null cost 值、Δcost值和Configuration cost值分别为112.6, 172.0, 59.4和7.248. 训练集化合物活性的计算值与实测值相关系数为0.9031, 偏差值为0.8976, 基于Fischer的交叉验证结果表明药效团模型具有较高的置信度, 所得药效团对训练集化合物活性值的预测结果显示有较好的预测能力, 可用于数据库搜索指导发现新的具有该活性的先导化合物, 也可用于中药或天然产物药物研究开发.  相似文献   

6.
新型酪氨酸激酶小分子抑制的三维药效团研究   总被引:2,自引:0,他引:2  
通过CATALYST软件包得到了两类HER2抑制的三维药效团模型。尽管亚苄基丙二腈化合物和3-取代吲哚啉-2-酮系列化合物具有完全不同的骨架结构,但得到的药效团却具有共同的特性,这表明当这两类抑制剂和受体发生相互作用时,采用了相似的结合模式。共同的药效团模型包括一个氢键受体,一个氢键给体,一个脂肪类疏水团以及一个芳香类疏水团。根据药效团模型,我们还进行了三维构效关系的研究,结果表明得到的药效团模型具有很好的预测能力(线性回归系数R≈0.96)。药效团模型对于研究酪氨酸激酶小分子抑制剂的结构与活性关系,以及评估和预测此类未知化合物活性具人重要的意义。  相似文献   

7.
通过CATALYST软件包得到了两类HER2抑制的三维药效团模型。尽管亚苄基丙二腈化合物和3-取代吲哚啉-2-酮系列化合物具有完全不同的骨架结构,但得到的药效团却具有共同的特性,这表明当这两类抑制剂和受体发生相互作用时,采用了相似的结合模式。共同的药效团模型包括一个氢键受体,一个氢键给体,一个脂肪类疏水团以及一个芳香类疏水团。根据药效团模型,我们还进行了三维构效关系的研究,结果表明得到的药效团模型具有很好的预测能力(线性回归系数R≈0.96)。药效团模型对于研究酪氨酸激酶小分子抑制剂的结构与活性关系,以及评估和预测此类未知化合物活性具人重要的意义。  相似文献   

8.
构建人类腺苷受体A3亚型药效团模型和三维蛋白结构模型用于作用模式研究.以18个来源于文献具有腺苷受体A3亚型拮抗活性的化合物作为训练集,使用HypoGen方法构建药效团模型.通过同源模建和分子动力学模拟构建了人类腺苷受体A3亚型的三维蛋白模型,并利用PROCHECK方法评估该模型的合理性,对所得的结构使用分子对接程序进行作用模式分析,药效团模型和同源模建结果相互匹配较好.使用新药效团模型对MDL药物数据库(MDDR)中包含的约120000个化合物进行虚拟筛选,得到了8个候选化合物,用于进一步的生物学评价和活性测定.本工作对于人类腺苷受体A3亚型拮抗剂的设计和抗哮喘药物的研发具有一定的理论指导和应用价值.  相似文献   

9.
葛燕丽  姜凤超 《化学学报》2005,63(17):1613-1620
利用计算机辅助药物设计软件Catalyst构建了哌啶酮类法尼基转移酶抑制剂的药效团模型, 结合所构建的药效团模型, 设计并合成出17个哌啶酮类化合物, 其中16个目标化合物未见文献报道, 其结构均经IR, MS及1H NMR等确证. 利用MTT法得到其对于肿瘤细胞抑制的IC50值. 初步生物活性测试表明, 目标化合物均具有抑瘤活性, 其中11个化合物的IC50值低于阳性对照5-Fu, 并且实测值与所构建的药效团模型的预测值相关性较好.  相似文献   

10.
选择20 个3,4-二氢-1(1H)-异喹啉酮类gpIIb/IIIa受体抑制剂作为训练集, 利用Catalyst软件包建立了gpIIb/IIIa受体抑制剂三维药效团模型. 探讨了药效团作用模式. 并通过建立的可靠性最佳的药效团模型(线性回归系数r=0.7715), 从中草药数据库中虚拟筛选了gpIIb/IIIa受体抑制剂, 通过实验活性测定得到了8个抑制ADP活化全血血小板聚集的IC50从40到100 μmol·L-1的化合物, 进一步证明了所建药效团模型的有效性.  相似文献   

11.
It is generally assumed that selective serotonin reuptake inhibitors (SSRIs) induce antidepressant activity by inhibiting serotonin (5-HT) reuptake transporters, thus elevating synaptic 5-HT levels and, finally, ameliorates depression symptoms. New evidence indicates that SSRIs may also modulate other neurotransmitter systems by inhibiting neuronal nicotinic acetylcholine receptors (nAChRs), which are recognized as important in mood regulation. There is a clear and strong association between major depression and smoking, where depressed patients smoke twice as much as the normal population. However, SSRIs are not efficient for smoking cessation therapy. In patients with major depressive disorder, there is a lower availability of functional nAChRs, although their amount is not altered, which is possibly caused by higher endogenous ACh levels, which consequently induce nAChR desensitization. Other neurotransmitter systems have also emerged as possible targets for SSRIs. Studies on dorsal raphe nucleus serotoninergic neurons support the concept that SSRI-induced nAChR inhibition decreases the glutamatergic hyperstimulation observed in stress conditions, which compensates the excessive 5-HT overflow in these neurons and, consequently, ameliorates depression symptoms. At the molecular level, SSRIs inhibit different nAChR subtypes by noncompetitive mechanisms, including ion channel blockade and induction of receptor desensitization, whereas α9α10 nAChRs, which are peripherally expressed and not directly involved in depression, are inhibited by competitive mechanisms. According to the functional and structural results, SSRIs bind within the nAChR ion channel at high-affinity sites that are spread out between serine and valine rings. In conclusion, SSRI-induced inhibition of a variety of nAChRs expressed in different neurotransmitter systems widens the complexity by which these antidepressants may act clinically.  相似文献   

12.
The synthesis of 6-nitroquipazine, a very potent and selective 5-hydroxytryptamine (5-HT; serotonin) uptake inhibitor, labeled with tritium is described. High specific activity [3H]6-nitroquipazine could be prepared by the nitration of [3H]quipazine using a mixture of equal volumes of sulfuric acid and nitric acid. The radiochemical yield was approximately 50% based on [3H]quipazine. The radiochemical purity was more than 95% from high performance liquid chromatography(HPLC) and thin layer chromatography(TLC) determinations. [3H]6-Nitroquipazine would be a new suitable radioligand for studying 5-HT transporter complex in brain and platelets.  相似文献   

13.
L-DOPA therapy in Parkinson’s disease (PD) is limited due to emerging L-DOPA-induced dyskinesia. Research has identified abnormal dopamine release from serotonergic (5-HT) terminals contributing to this dyskinesia. Selective serotonin reuptake inhibitors (SSRIs) or 5-HT receptor (5-HTr) agonists can regulate 5-HT activity and attenuate dyskinesia, but they often also produce a loss of the antiparkinsonian efficacy of L-DOPA. We investigated vilazodone, a novel multimodal 5-HT agent with SSRI and 5-HTr1A partial agonist properties, for its potential to reduce dyskinesia without interfering with the prokinetic effects of L-DOPA, and underlying mechanisms. We assessed vilazodone effects on L-DOPA-induced dyskinesia (abnormal involuntary movements, AIMs) and aberrant responsiveness to corticostriatal drive in striatal medium spiny neurons (MSNs) measured with in vivo single-unit extracellular recordings, in the 6-OHDA rat model of PD. Vilazodone (10 mg/kg) suppressed all subtypes (axial, limb, orolingual) of AIMs induced by L-DOPA (5 mg/kg) and the increase in MSN responsiveness to cortical stimulation (shorter spike onset latency). Both the antidyskinetic effects and reversal in MSN excitability by vilazodone were inhibited by the 5-HTr1A antagonist WAY-100635, demonstrating a critical role for 5-HTr1A in these vilazodone actions. Our results indicate that vilazodone may serve as an adjunct therapeutic for reducing dyskinesia in patients with PD.  相似文献   

14.
Molecular modeling and structure-activity relationship studies were performed to propose a model for binding of the neurotransmitter serotonin (5-HT) to the human serotonin transporter (hSERT). Homology models were constructed using the crystal structure of a bacterial homologue, the leucine transporter from Aquifex aeolicus, as the template and three slightly different sequence alignments. Induced fit docking of 5-HT into hSERT homology models resulted in two different binding modes. Both show a salt bridge between Asp98 and the charged primary amine of 5-HT, and both have the 5-HT C6 position of the indole ring pointing toward Ala173. The difference between the two orientations of 5-HT is an enantiofacial discrimination of the indole ring, resulting in the 5-hydroxyl group of 5-HT being vicinal to either Ser438/Thr439 or Ala169/Ile172/Ala173. To assess the binding experimentally, binding affinities for 5-HT and 17 analogues toward wild type and 13 single point mutants of hSERT were measured using an approach termed paired mutant-ligand analogue complementation (PaMLAC). The proposed ligand-protein interaction was systematically examined by disrupting it through site-directed mutagenesis and re-establishing another interaction via a ligand analogue matching the mutated residue, thereby minimizing the risk of identifying indirect effects. The interactions between Asp98 and the primary amine of 5-HT and the interaction between the C6-position of 5-HT and hSERT position 173 was confirmed using PaMLAC. The measured binding affinities of various mutants and 5-HT analogues allowed for a distinction between the two proposed binding modes of 5-HT and biochemically support the model for 5-HT binding in hSERT where the 5-hydroxyl group is in close proximity to Thr439.  相似文献   

15.
基于药效团的三维数据库搜索   总被引:1,自引:0,他引:1  
用表皮生长因子受体酪氨酸激酶抑制剂的药效团作为提问结构在三维数据库中进行了搜索.从得到的命中结构中挑选了12个化合物用柔性受体模型方法对其活性进行了预测, 发现有2个化合物具有一定的预测活性.这2个化合物可能具有酪氨酸激酶抑制剂的活性, 可能作为先导化合物进行结构优化.  相似文献   

16.
In patients with depression, the use of 5-HT reuptake inhibitors can improve the condition. Machine learning methods can be used in ligand-based activity prediction processes. In order to predict SERT inhibitors, the SERT inhibitor data from the ChEMBL database was screened and pre-processed. Then 4 machine learning methods (LR, SVM, RF, and KNN) and 4 molecular fingerprints (CDK, Graph, MACCS, and PubChem) were used to build 16 prediction models. The top 5 models of accuracy (Q) in the cross-validation of training set were used to build three different ensemble learning models. In the test1 set, the VOT_CLF3 model had the largest SP (0.871), Q (0.869), AUC (0.919), and MCC (0.728). In the unbalanced test2 set, VOT_CLF3 had the largest SE (0.857), SP (0.867), Q (0.865) and MCC (0.639). VOT_CLF3 was recommended for the virtual screening process of SERT inhibitors. In addition, 12 molecular structural alerts that frequently appear in SERT inhibitors were found (P < 0.05), which provided important reference value for the design work of SERT inhibitors.  相似文献   

17.
The functional serotonin type-3 receptor (5-HT(3)-R), which is the target of many neuroactive drugs, is known to be a homopentamer made of five identical subunits A (5-HT(3A)-R) or a binary heteropentamer made of subunits A and B (5-HT(3A/B)-R) with a still debated arrangement and stoichiometry. This complex picture has been recently further complicated by the discovery of additional 5-HT(3)-R subunits, C, D, and E, which, similarly to the B subunit, are apparently able to form functional receptors only if co-expressed with subunit A. Being the binding site for both serotonin and antagonists (i.e. drugs) located at the extracellular interface between two adjacent subunits, the large variability of the 5-HT(3)-R composition becomes a crucial issue, since it can originate many different interfaces providing non-equivalent ligand binding sites and complicating the pharmacological modulation. Here, the different 5-HT(3)-R interfaces are analysed, on the bases of the structural conformations of previously built 3D homology models and of the known subunit sequences, by addressing their physicochemical characterization. The results confirm the presence of an aromatic cluster located in the core of the A-A interface as a key determinant for having an interface both stable and functional. This is used as a discriminant to make hypotheses about the capability of all the other possible interfaces constituted by the known 5-HT(3)-R sequences A, B, C, D, and E to build active receptors.  相似文献   

18.
In search of a dopamine D2 and serotonin 5-HT3 receptors dual antagonist as a potential broad antiemetic agent, a number of benzamides were prepared from 4-amino-5-chloro-2-methoxybenzoic acid derivatives and 6-amino-1,4-dialkylhexahydro-1,4-diazepines and evaluated for their binding affinity for the dopamine D2 and the serotonin 5-HT3 receptors using rat brain synaptic and rat cortical membranes, respectively. From the results of both in vitro receptor binding and in vivo biological assays for the dopamine D2 receptor, 1-ethyl-4-methylhexahydro-1,4-diazepine ring was selected as an optimum amine moiety. Introduction of one methyl group on the nitrogen atom at the 4-position and/or modification of the substituent at the 5-position of the 4-amino-5-chloro-2-methoxybenzoyl moiety caused a marked increase in the dopamine D2 receptor binding affinity along with a potent 5-HT3 receptor binding affinity. Among the compounds, 5-chloro-N-(1-ethyl-4-methylhexahydro-1,4-diazepin-6-yl)-2-methoxy-4-methylaminobenzamide (82), 5-bromo (110), and 5-iodo (112) analogues exhibited a much higher affinity for the dopamine D2 receptor than that of metoclopramide (IC50=17.5-61.0 nM vs. 483 nM). In particular, 82 showed a potent antagonistic activity for both receptors in vivo tests. Optical resolution of the racemate 82 brought about a dramatic change in the pharmacological profile with the (R)-enantiomer exhibiting a strong affinity for both the dopamine D2 and the 5-HT3 receptors, while the corresponding (S)-enantiomer had a potent and selective serotonin 5-HT3 receptor binding affinity.  相似文献   

19.
We have employed a rapid and highly efficient on-line preconcentration method, cation-selective exhaustive injection and sweeping micellar electrokinetic chromatography (CSEI-sweeping-MEKC), for the analysis of selective serotonin reuptake inhibitors (SSRIs) of antidepressant drugs. We monitored the effects of several of the CSEI-sweeping-MEKC parameters - including the pH, the concentrations of high-conductivity buffer (HCB), sodium dodecyl sulfate (SDS), and organic modifier, the injection length of the HCB, and the injection time of the sample - to optimize the separation process. The optimal background electrolyte was 50 mM citric acid/disodium hydrogenphosphate buffer (pH 2.2) containing 100 mM SDS and 22% isopropyl alcohol. The sensitivity enhancements of the SSRIs sertraline, fluoxetine, paroxetine, fluvoxamine, and citalopram ranged from 5.7 x 10(4) to 1.2 x 10(5); the coefficients of determination exceeded 0.9938 and the relative standard deviations of the peak heights were less than 3.2%; the detection limits ranged from 0.056 to 0.22 ng/mL. We employed the optimal conditions to analyze these five SSRIs in a plasma sample prepared using solid-phase extraction (SPE) to minimize the influence of the matrix. Although the limits of detection of the SSRIs in human plasma were higher than those in pure water, this present technique is more sensitive than other, more-conventional methods. The recovery of the SPE extraction efficiency was satisfactory (up to 89%). Our findings suggest that, under the optimal conditions, the CSEI-sweeping-MEKC method can be used successfully to determine these five SSRIs in human plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号