首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The activity coefficients of K3[Co(CN)6], Mg3[Co(CN)6]2, and Ca3[Co(CN)6]2,are examined. The results highlight close similarity with the correspondinghexacyanoferrate (III) salts. On dilution, K3[Co(CN)6], like K3[Fe(CN)6], approachesthe limiting law from the upper side, while Mg3[Co(CN)6]2 and Ca3[Co(CN)6]2tend to the limiting law from the opposite side, like Mg3[Fe(CN)6]2,Ca3[Fe(CN)6]2, Sr3[Fe(CN)6]2, and Ba3[Fe(CN)6]2. Both kinds of behavior agreewith theory for a model of hard spheres bearing electric charges +1 and –3 or+2 and –3, respectively. The paramater values of the Pitzer equation for activityand osmotic coefficients are reported.  相似文献   

2.
Six lanthanide complexes [Ln(pmc)2NO3]n [Hpmc = pyrimidine‐2‐carboxylic acid, Ln = La ( 1 ), Pr ( 2 )], [Ln(pmc)2(H2O)3]NO3 · H2O [Ln = Eu ( 3 ), Tb ( 4 ) Dy ( 5 ), Er ( 6 )] were synthesized by the reactions of lanthanide nitrate and pyrimidine‐2‐carboxylic acid in water at room temperature. These complexes were characterized by single‐crystal X‐ray diffraction analysis, elemental analysis, IR, circular dichroism (CD) and fluorescence spectra. Structure analysis shows that complexes 1 and 2 are isostructural with P43212 space group, whereas isostructural complexes 3 – 6 belong to the P21/c space group. In complexes 1 and 2 , the central metal atoms are coordinated by nitrates and pmc, which are self‐assembled to construct a 3D porous network with 62.62.62.62.62.62 (66) topology. In complexes 3 – 6 , H2O and pmc ligands are coordinated and the complexes exhibit a one‐dimensional zigzag chain, which is further expanded into a 3D structure by hydrogen bonding. In addition, the circular dichroism of 1 and 2 proves that the two complexes are both chiral with achiral ligand of Hpmc. Luminescent measurements of compounds 3 – 5 indicate that the characteristic fluorescence of Eu3+, Tb3+, and Dy3+ are observed.  相似文献   

3.
Four complex salts with the polyatomic [Rh(NH3)6]3+ cation are synthesized and studied by X-ray diffraction. The crystallographic characteristics of [Rh(NH3)6](WO4)Cl are determined and the structures of [Rh(NH3)6]Cl3, [Rh(NH3)6](ReO4)3·2H2O, and [Rh(NH3)6](MoO4)Cl·3H2O are solved. The features of mutual packing of the fragments are studied.  相似文献   

4.
Results are reported of an experimental determination by double-charge transfer spectroscopy of the previously unknown double-ionization energies of the fluorinated benzene molecules C6H5F, l,2-C6H4F2, 1,3-C6H4F2, 1,4-C6H4F2, 1,2,3-C6H3F3, 1,2,4-C6H3F3, 1,3,5-C6H3F3, 1,2,3,4-C6H2F4, 1,2,3,5-C6H2F4, 1,2,4,5-C6H2F4, and C6HF5. The data are remarkably similar; the lowest double-ionization energies for all the molecules are within ±0.5 of 25.7 eV, and the data for higher energies suggest that the distributions of electronic state energies for the dications of the molecules show only small variations.  相似文献   

5.
Reactions of Benzoylating Agents with Phosphorous Acid H3PO3 reacts with (C6H5CO)2O to yield C6H5C(OH)(PO3H2)2 1 . In contrast, the reaction with C6H5COCl proceeds with the formation of C6H5CCl(PO3H2)2 2 and p-ClC6H4CH(PO3H2)2 3 . The best yields of 2 and 3 are obtained, if the reaction are carried out under pressure. 2 is rapidly hydrolysed in alkaline solution at elevated temperatures to 1 .  相似文献   

6.
Synthetic routes for the preparation of 3-alkyl-6-phenyl-4(3H)-pteridinones 6 and their corresponding 8-oxides 5 (R = CH3, C2H5, (CH2)2CH3, (CH2)3CH3, CH(CH3)C2H5, CH(CH3)2 and CH(C2H5)CH2OCH(OC2H5)2 are described and their reactivities towards xanthine oxidase from Arthrobacter M-4 are determined. Only the 3-methyl derivative of 6-phenyl-4(3H)-pteridinone and its 8-oxide i. e. 6a and 5a are found to be substrates although their reactivities are still very low. Oxidation takes place at C-2 of the pteridinone nucleus. All the 3-alkyl derivatives are less tightly bound to the enzyme than 6-phenyl-4(3H)-pteridinone. Introduction of the N-oxide at N-8 considerably lowers the binding of the substrates. Inhibition studies have revealed that 3-methyl-6-phenyl-4(3H)-pteridinone ( 6a ) is a non-competitive inhibitor with a Ki-value of 47 μM and the 3-ethyl derivative ( 6b ) an uncompetitive one with a Ki-value of 19.6 μM.  相似文献   

7.
The stannides RE2Au3Sn6 (RE = La, Ce, Pr, Nd, Sm) were synthesized from the elements by arc-melting. Small single crystals were grown by annealing samples in sealed tantalum tubes in an induction furnace with a special annealing sequence. The polycrystalline phases were characterized through their X-ray powder diffraction pattern. The structures of Ce2Au3Sn6, Pr2Au3Sn6, and Nd2Au3Sn6 were refined from single-crystal X-ray diffractometer data. The RE2Au3Sn6 stannides crystallize with the orthorhombic La2Zn3Ge6 type, space group Cmcm. The basic structural building units are Au1@Sn4 tetrahedra and Au2@Sn5 square pyramids. These units are condensed to layers and the structure can be described by a simple stacking of tetrahedral and pyramidal layers with the rare earth cations in between. Temperature dependent susceptibility studies indicate that all rare earth atoms are in the trivalent oxidation state, as their effective magnetic moments match the expected values of the free RE3+ ions. Pr2Au3Sn6 and Nd2Au3Sn6 exhibit antiferromagnetic ordering at TN = 6.3(1) and 6.7(1) K. Investigations of the electrical resistivity of La2Au3Sn6 and Ce2Au3Sn6 confirmed that these compounds are metallic, for La2Au3Sn6 a lower resistivity was observed, in line with the absence of screening unpaired electrons. 119Sn Mössbauer spectra for La2Au3Sn6, Ce2Au3Sn6, Pr2Au3Sn6 and Nd2Au3Sn6 show a complex superposition of three sub-spectra which can be differentiated through their distinctly different quadrupole splitting parameters. The isomer shifts (1.87 to 2.22 mm · s–1) indicate significant s electron density at the tin nuclei.  相似文献   

8.
Studies on Selenium Compounds. LXIV. Preparation and Properties of Acid Derivatives of Phenylselenium(IV) Compounds (C6H5) 2SeX2 and (C6H5) 3SeX. Reactions of (C6H5) 2SeBr2 and (C6H5) 3SeCl with silver salts of acids are investigated. From (C6H5) 2SeBr3 and AgY (Y = N03, CH3CO3, CF3CO2, 1/2 SO4, CH3SO3, NCO) the compounds (C6H5) 2Se(NO3) 2 (C6H5) 2Se(CH3CO2) 2, (C6Hs) 2Se(CF3CO2) 2, (C6H5) 2SeSO4, (C6H5) 2Se(CH3SO3) 2 and (C6H5) 2Se(NCO) 2 are prepared. They are characterized by solubility, molecular weight and conductivity. Reaction of (C6H5) 3SeCl and AgX (X = NO3, CH3CO2) yields (C6H5) 3SeNO3 and (C6H5) 3SeCH3CO2.  相似文献   

9.
New Syntheses and Crystal Structures of Bis(fluorophenyl) Mercury, Hg(Rf)2 (Rf = C6F5, 2, 3, 4, 6‐F4C6H, 2, 3, 5, 6‐F4C6H, 2, 4, 6‐F3C6H2, 2, 6‐F2C6H3) Bis(fluorophenyl) mercury compounds, Hg(Rf)2 (Rf = C6F5, C6HF4, C6H2F3, C6H3F2), are prepared in good yields by the reactions of HgF2 with Me3SiRf. The crystal structures of Hg(2, 3, 4, 6‐F4C6H)2 (monoclinic, P21/n), Hg(2, 3, 5, 6‐F4C6H)2 (monoclinic, C2/m), Hg(2, 4, 6‐F3C6H2)2 (monoclinic, P21/c) and Hg(2, 6‐F2C6H3)2 (triclinic, P1) are described.  相似文献   

10.
Syntheses and Properties of Some New Tris(fluorophenyl)antimony and -bismuth Compounds. Crystal Structure of Tris(2,6-difluorophenyl)bismuth (2,6-F2C6H3)3Bi, (2,4,6-F3C6H2)3Bi, and (2,6-F2C6H3)3Sb are prepared via Grignard reactions with BiBr3 and SbBr3, respectively. The syntheses and properties of the new compounds and the crystal structure of (2,6-F2C6H3)3Bi are described. From the reaction of BiBr3 with Ag(OCOC6H3F2) the bismuth benzoate Bi(OCOC6H3F2)3 is formed in 83% yield. Attempts to prepare (2,6-F2C6H3)3Bi by decarboxylation of the bismuth benzoate failed.  相似文献   

11.
The reaction of triphenylbismuth, hydrogen peroxide, and phenol (molar ratio 1 : 1 : 2) in ether was used to synthesize triphenylbismuth diaroxides Ph3Bi(OAr)2 [Ar = C6H3(NO2)2-2,4, C6H2(NO2)3-2,4,6, C6H3Cl2-2,6, C6H2Cl3-2,4,6, C6H3Br2-2,4, C6H2Br3-2,4,6, C6H2Br2-2,4,Me-6, C6H2Br2-2,6, NO2-4]. At an equimolar reagent ratio, bridged bismuth compounds (Ph3BiOAr)2O are formed. The crystal structure of bis-(2,4-dinitrophenoxy)triphenylbismuth Ph3Bi[OC6H3(NO2)2-2,4]2 was studied by X-ray diffraction to show that the bismuth atom has a distorted trigonal bipyramidal coordination and the 2,4-dinitrophenoxyl ligands are axial. The CBiC and OBiO angles are 109.6(5)°, 122.3(5)°, 128.1(5)°, and 175.6(3)°. The Bi-O1,6 and Bi-C bond lengths are 2.256(10), 2.242(9) and 2.18(1), 2.18(1), 2.19(1) Å, respectively.__________Translated from Zhurnal Obshchei Khimii, Vol. 75, No. 6, 2005, pp. 927–929.Original Russian Text Copyright © 2005 by Sharutin, Egorova, Tsiplukhina, Molokov, Fukin.  相似文献   

12.
Preparation, Properties, and Reaction Behaviour of 2-(Dimethylaminomethyl)phenyl- and 8-(Dimethylamino)naphthylsubstituted Lithium Hydridosilylamides – Formation of Silanimines by Elimination of Lithium Hydride The hydridosilylamines Ar(R)Si(H)–NHR′ ( 2 a : Ar = 2-Me2NCH2C6H4, R = Me, R′ = CMe3; 2 b : Ar = 2-Me2NCH2C6H4, R = Ph, R′ = CMe3; 2 c : Ar = 2-Me2NCH2C6H4, R = Me, R′ = SiMe3; 2 d : Ar = 8-Me2NC10H6, R = Me, R′ = CMe3; 2 e : Ar = 8-Me2NC10H6, R = Ph, R′ = CMe3; 2 f : Ar = 8-Me2NC10H6, R = Me, R′ = SiMe3) have been synthesized from the appropriate chlorosilanes Ar(R)SiHCl either by reaction with the stoichiometric amount of Me3CNHLi ( 2 a , 2 b , 2 d , 2 e ) or by coammonolysis in liquid NH3 with chlorotrimethylsilane in molar ratio 1 : 3 ( 2 c , 2 f ). Treatment of 2 a–2 f with n-butyllithium in equimolar ratio in n-hexane resulted in the lithiumhydridosilylamides Ar(R)Si(H)–N(Li)R′ 3 a–3 f . The frequencies of the Si–H stretching vibration and 29Si–1H coupling constants in the amides are smaller than in the analogous amines indicating a higher hydride character for the hydrogen atom of the Si–H group in the amides compared to the amines. Results of NMR spectroscopic studies point to the existence of a (Me2)N → Si coordination bond in the 8-(dimethylamino)naphthyl-substituted amines and amides. The amides 3 a–3 c are stable under refluxing in m-xylene. At the same conditions 3 d and 3 e eliminate LiH and the silanimines 8-Me2NC10H6(R)Si=NCMe3 ( 4 d : R = Me, 4 e : R = Ph) are formed. The amides 3 a–3 d und 3 f react with chlorotrimethylsilane in THF to give the corresponding N-substitution products Ar(R)Si(H)–N(SiMe3)R′ 6 a–6 d and 6 f in good yields. 4 d is formed as a byproduct in the reaction of 3 d with chlorotrimethylsilane. In n-hexane and m-xylene these amides are little reactive opposite to chlorotrimethylsilane. 6 a–6 d and 6 f are obtained in very small amounts. In the case of 3 d besides the N-substitution product 6 d the silanimine 4 d is obtained. In contrast to chlorotrimethylsilane the amides 3 a and 3 f react well with chlorodimethylsilane in m-xylene producing 2-Me2NCH2C6H4(H) SiMe–N(SiHMe2)CMe3 ( 7 a ) and 8-Me2NC10H6(H)SiMe–N(SiHMe2)SiMe3 ( 7 f ).  相似文献   

13.
2,6-Dimethoxyphenyl derivatives of sulfur, selenium, and tellurium, such as ΦEEΦ, Φ2E, ΦSeH, [MeΦ2E]X (X=MeSO4, ClO4), Φ2EO · xH2O, [Φ2EOR]ClO4, [Φ2EOH]ClO4 (R=Me, Et), Me2SnCl2 · 2Φ2EO (E=S, Se) [Φ=2,6-(MeO)2C6H3; E=S, Se, Te] have been prepared, and their properties compared with common phenyl derivatives. The reaction rates of Φ2E with dimethyl sulfate and butyl bromide increased in the order E=S<Se<Te, which were compared with those of Ph3M and Φ3M, M=P>As>Sb. These reactivities are parallel with the electrochemical oxidation potentials reported for Ph2E and with the first ionization potentials reported for Ph3M. The rate of Φ2Te was faster than that of Ph3P and slightly faster than that of Φ3Sb. From the reactivity of [Φ2E-Me]+ salts with nucleophiles, the E+–Me bond strengths were estimated to increase in the order E=Se<S<Te. The reaction rates of Φ2EO with dimethyl sulfate increased in the order E=S<Se<Te, and the respective rate of Φ2EO was faster than that of Φ2E. The origins of these reactivities and bond strengths are discussed.  相似文献   

14.
Glass Formation and Properties of Chalcogenide Systems. XIII. On the Compounds Na6Ge2S6 · 4 CH3OH and Na6Ge2Se6 · 4 CH3OH The glasses Ge2S3 and Ge2Se3 are soluble in solutions of Na2S or Na2Se in CH3OH forming Na6Ge2S6 · 4 CH3OH and Na6Ge2Se6 · 4 CH3OH. On heating the CH3OH-free substances are formed. From the i.r. and Raman spectra can de seen that the structure of the ions Ge2S, Ge2Se, P2S64?, and of Si2Cl6 is of the same type. The formation of the compounds can be regarded as a chemical proof for the existence of [Ge2S6] and [Ge2Se6] units as structural groups in the glasses Ge2S3 and Ge2Se3.  相似文献   

15.
Ternary Halides of the Type A3MX6. IX Crystal Structures of Na3TiCl6 and K3TiCl6 Light yellow single crystals of Na3TiCl6 and K3TiCl6 are obtained from the binary components, TiCl3 and NaCl and KCl, respectively, in 1 : 3 molar ratios. Na3TiCl6 crystallizes with the cryolite type of structure (monoclinic, P21/n, Z = 2, a = 668,02(8), b = 709,13(6), c = 981,38(12) pm, β = 90,31(2)°) while K3TiCl6 belongs to the K3MoCl6 type of structure (monoclinic, P21/c, Z = 4, a = 1261,6(2), b = 751,36(8), c = 1210,7(2) pm, β = 108,30(2)°).  相似文献   

16.
Geometric and topological analysis of all known types of K,TR germanates (TR = La-Lu, Y, Sc, In) is carried out with the use of computer techniques (the TOPOS 4.0 program package). Framework structures are represented as three-dimensional (3D) K,TR,Ge networks (graphs) with oxygen atoms removed. The following crystal-forming 2D TR,Ge networks are determined: for K2Nd4Ge4O13(OH)4, this is TR 4 3 3 4 3 3 + T 4 3 4 3; for K2YbGe4O10(OH), this is TR 6 6 3 6 + T 1 6 8 6 + T 2 3 6 8; for K2Sc2Ge2O7(OH)2, this is TR 6 4 6 4 + T 6 4 6; and for KScGe2O6, TR 6 6 3 6 3 4 + T 1 6 3 6 + T 2 6 4 3. The full 3D reconstruction of the self-assembly mechanism of crystal structures is performed as follows: precursor cluster—primary chain—microlayer-microframework (supraprecursor). In K2Nd4Ge4O13(OH)4, K2Sc2Ge2O7(OH)2, and KScGe2O6, an invariant type of cyclic six-polyhedral precursor cluster is identified; this precursor clusters is built of TR octahedra, which are stabilized by atoms K. For K2Nd4Ge4O13(OH)4, the type of cyclic four-polyhedral precursor cluster of tetrahedron-linked TR octatopes is identified. The cluster coordination number in a layer is six (the maximum possible value) only for anhydrous germanate KScGe2O6 (an analogue of pyroxene, PYR); in the other OH-containing germanates, this number is four. The mechanism of formation of Ge radicals in the form of groups Ge2O7 and Ge4O13, a chain GeO3, and a tubular assembly of linked cyclic groups Ge8O20 is considered.  相似文献   

17.
The fluorination reactions of (C6F5)3E (E = As, Sb) with elemental flourine yield (C6F5)3EF2 in high yields. From the reactions of (C6F5)3EF2 with CsF the new salts Cs[(C6F5)3EF3] are obtained. (C6F5)2SeF2 and C6F5TeF3 are formed for the first time by reacting (C6F5)2SeF and (C6F5)2TeF2 with elemental flourine and XeF2, respectively. (C6F5)2SeF2 rapidly reacts with glass, and the new compound (C6F5)2SeO is isolated. The preparations, properties and 19F NMR spectra of the new compounds are described.  相似文献   

18.
Investigations on Syntheses and Reactions of Fluorophenylmercury Compounds with the Ligands 2-FC6H4, 2,6-F2C6H3, and 2,4,6-F3C6H2 2,6-F2C6H3HgCl and 2,4,6-F3C6H2HgCl are synthesized via the reactions of the corresponding phenylmagnesium compounds and HgCl2. 2-FC6H4HgCl is selectively obtained only in a reaction involving intermediately formed Cd(2-FC6H4)2. The diphenylmercury derivative Hg(2,4,6-F3C6H2)2 is obtained while stirring a dichloromethane solution of 2,4,6-F3C6H2HgCl for several days. The direct mercuration of 1,3,5-trifluorobenzene with Hg(OCOCF3)2 yields, depending on the stoichiometry, 2,4,6-trifluorophenylmercury trifluoroacetate and 1,3-bis(trifluoroacetatomercuri)-2,4,6-trifluorobenzene which is converted into the corresponding chloromercuri derivative by treatment with hydrochloric acid in CH3CN. As a product of the reaction of 1,3,5-trifluorobenzene and HgO in CH3COOH only 2,4,6-trifluorophenylmercury acetate is isolated although spectroscopic evidence has been found for double and triple mercurated derivatives. All compounds are characterized by elemental analyses, nmr and mass spectra. The reaction of Hg(2,4,6-F3C6H2)Cl and Cd(CF3)2 · 2 CH3CN gives Hg(2,4,6-F3C6H2)CF3 which slowly dismutates in CH2Cl2 solution into Hg(2,4,6-F3C6H2)2 and Hg(CF3)2. The ligand exchange of Hg(2,4,6-F3C6H2)2 and TeCl4 selectively gives Te(2,4,6-F3C6H2)2Cl2 and Hg(2,4,6-F3C6H2)Cl. Transmetalations of Hg(2,4,6-F3C6H2)2 and gallium or tin give NMR spectroscopic evidence for the new derivates Ga(2,4,6-F3C6H2)3 and Sn(2,4,6-F3C6H2)4.  相似文献   

19.
Solution reactions of silver(I), copper(I), cadmium(II) and zinc(II) salts with 1,3-imidazolidine-2-thione (imdt) under diverse conditions yielded four complexes: [Cd(SC3H6N2)2(Ac)2] (1), [Zn(SC3H6N2)2(Ac)2] (2), [Cu2(SC3H6N2)6]SO4 (3) and [Ag2(SC3H6N2)6]SO4 (4). Complexes 1 and 2 are 1D and 2D hydrogen-bond aggregations. Complexes 3 and 4 are isostructural 3D hydrogen-bond networks. The diverse coordination modes of imdt and different anions are the major factors for three distinct hydrogen-bond structures.  相似文献   

20.
The luminescences of Cs2NaSbCl6 and Cs2NaSbBr6 are reported. For Cs2NaSbBr6 the luminescence properties are described in terms of a band model. For Cs2NaSbCl6 the luminescence is interpreted in terms of isolated Sb3+ centres, comparable with Cs2NaMCl6−Sb3+ (M = Sc, Y, La). The radius of the Sb3+ ion is larger in the chloro- than in the bromo-elpasolite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号