首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We developed a plate-shaped non-contact transporter based on ultrasonic vibration, exploiting a phenomenon that a plate can be statically levitated at the place where its gravity and the acoustic radiation force are balanced. In the experiment, four piezoelectric zirconate titanate elements were attached to aluminum plates, on which lattice flexural vibration was excited at 22.3 kHz. The vibrating plates were connected to a loading plate via flexible posts that can minimize the influence of the flexure induced by heavy loads. The distribution of the vibration displacement on the plate was predicted through finite-element analysis to find the appropriate positions of the posts. The maximum levitation height of this transporter was 256 μm with no load. When two vibrating plates were connected to a loading plate, the maximum transportable load was 4.0 kgf.  相似文献   

2.
The stability and free vibration analyses of a cantilever shear building with generalized support conditions and with multiple masses (rotational and translational) rigidly attached at both ends and along its height are presented. The proposed model includes the simultaneous effects of: (1) lateral and rotational elastic restraints at the base support; (2) a uniform distributed mass and rotary inertia plus lumped rotary and translational masses rigidly attached at both extremes and along its height; (3) linearly distributed axial load plus the concentrated vertical axial loads caused by the lumped masses; and (4) shear deformations and shear forces induced by the applied axial forces. A parametric study is carried out that shows the importance of all variables included in this work on the stability and dynamic behavior of cantilever shear buildings, particularly the effects of the attached lumped masses and the rotational and translational constraints at the base support. A comparison with results presented by other researchers in previous studies shows that the proposed method and corresponding equations can be very useful in the assessment design of cantilever shear buildings. The main objective is to present readily solutions on the static stability and free vibration of cantilever shear buildings with generalized support conditions and multiple masses rigidly attached. The proposed method and corresponding expressions for the natural frequencies and modal shapes, buckling modes and axial critical loads are extensions of those presented recently by the senior author.  相似文献   

3.
The assembly of structures along continuous boundaries presents great difficulty in the context of modal synthesis. In order to solve such problems, a method is proposed in which a hybrid model is defined reflecting the dynamic behavior of a structure loaded along a boundary. It is based on Weinstein's method and corresponds to a generalization of the impedance matrix method. Generalized boundary co-ordinates are defined from branch modes obtained by introducing mass loading along the boundary. Thus, the hybrid model can be derived from testing as a result of two independent modal identifications. The method permits high precision prediction of the influence of strong structural modifications. Thus, in the case of rectangular plates, it has been possible to find the modes of a cantilever plate and of a plate with stiffeners from the free modes.  相似文献   

4.
Transverse vibration and stability analysis of circular plate subjected to follower force and thermal load are analyzed . B ased on the thin plate theory in involving the variable temperature, the differential equation of transverse vibration for the axisymmetric circular plate subjected to follower force and thermal load is established. Then, the differential equation of vibration and corresponding boundary conditions are discretized by the differential quadrature method. Meanwhile, the generalized eigenvalue under three different boundary conditions are calculated. In this case, the change curve of the first order dimensionless complex frequency of the circular plate subjected to the follower force in the different conditions with the variable temperature coefficient and temperature load is analyzed. The stability and corresponding critical loads of the circular plate subjected to follower force and thermal load with simply supported edge, clamped edge and free edge are discussed. The results provide theoretical basis for improving the dynamic stability of the circular plate.  相似文献   

5.
对于在仅有外加横向三角脉冲磁场下的悬臂导电薄板,给出了受到脉冲磁场影响时其动力稳定性的定量分析方法。揭示了在三角脉冲磁场下由于受到涡电流与总磁场相互作用所产生的面内磁体压力的作用,悬臂导电薄板会发生失稳。得到了在不同稳态磁场作用下受到三角脉冲磁场作用时导电薄板的磁弹性动力响应的数值模拟结果。在此基础上,给出了关于稳态磁场值、横向脉冲磁场峰值和脉冲持续时间等参数范围的磁弹性动力稳定性区域。  相似文献   

6.
应用各向异性稳态热传导解析解分析了三边对流换热、另一边给定不均匀温度的各向异性矩形悬臂板温度场。讨论了各向异性角对温度场分布的影响。各向异性角的增大加剧了温度梯度。数值结果表明各向异性角为0°的悬臂板内温度梯度最小。  相似文献   

7.
In this investigation a solution methodology is presented for studying the stability of a uniform cantilever having a translational and rotational spring at its support, carrying two concentrated masses, one at the support and the other at its tip, and subjected to a follower compressive force at its free end. The analysis is based on Timoshenko's beam theory by considering the cantilever as a continuous elastic system. The coupling effects on the flutter load are fully assessed for a variety of parameters such as translational and rotational springs at the support, translational and rotational inertia of the concentrated masses, and cross-sectional shape, as well as transverse shear deformation and rotatory inertia of the mass of the column.  相似文献   

8.
The added mass of the fluid surrounding it plats an important role in the dynamic behaviour of a submerged structure. The first few mode shapes and the respective natural frequencies of a submerged cantilever plate are found by using a finite element procedure, eigenvalues being obtained by a simultaneous iteration technique. The influence of the water depth below the plate and also of the water's lateral extent is considered, in order to test the convergency of the results. Results on the effects of the depth of immersion on the natural frequencies and mode shapes of the cantilever plate for different aspect ratios are presented.  相似文献   

9.
The stability behaviour of a cantilever beam subjected to the bending moment is investigated. It is found that the beam has divergence and flutter instability loads depending on the type of the loading. Moreover, it is shown that a beam subjected to a follower moment and a beam subjected to a bending moment which keeps its direction in the course of the motion behave in exactly the same way, according to the numerical calculations.  相似文献   

10.
An analytical method for determining eigenvalues for differential equations using special functions is presented. As an example, vibrations of an infinite-width cantilever plate moving with the supersonic velocity in a gas are described. For a two-dimensional problem, the analytical dependence between the plate eigenvibration characteristics and velocity was obtained, which allows us to make conclusions about motion stability. The developed technique can be applied to study many problems whose solution is associated with finding of eigenvalues. In contrast to similar techniques, the described method yields sufficiently accurate analytical expressions for eigenvalues, which allows one to use them in specific calculations.  相似文献   

11.
The dynamic analysis of flexible beams with large deformations is difficult and few studies have been performed. In this paper, the vibration analysis of several very flexible beams with large deflections using the finite element approach is studied. The examples were a cantilever beam and rotating flexible robot arms. The results were compared with the results available in the published literature. Several successful checks on the finite element results were performed to ensure the accuracy of the solutions. Due to the geometrical nonlinearity, several static equilibrium shapes can exist for large deflections of a cantilever beam for a given load. Nonlinear dynamic finite element analysis was implemented to investigate the stability of these shapes.  相似文献   

12.
The use of cantilever beams in suppressing excessive resonance amplitudes of rectangular cantilever plates is considered, and optimum values of their tuning and damping parameters are specified in graphical form. Because the cantilever plate problem, which is of strong industrial interest, does not lend itself to a Lévy-type solution, the Ritz method is used. Structural damping is incorporated into the main and auxiliary systems by treating them as having a complex elastic modulus. With appropriate selection of the parameters, the fundamental resonance of the plate is split into two new ones with considerably suppressed responses. In order to verify the analysis, an experimental investigation was carried out and the results obtained are compared with the theory developed.  相似文献   

13.
In this paper, the dynamic instability of a shear deformable composite plate subjected to periodic non-uniform in-plane loading is studied for four sets of boundary conditions. The static component and the dynamic component of the applied periodic in-plane loading are assumed to vary according to either parabolic or linear distributions. Initially, the plate membrane problem is solved using the Ritz method to evaluate the plate in-plane stress distributions within the prebuckling range due to the applied non-uniform in-plane edge loading. Subsequently using the evaluated stress distribution within the plate, the equations governing the plate instability boundaries are formulated via Hamilton's variational principle. Employing Galerkin's method, these partial differential equations are reduced into a set of ordinary differential equations (Mathieu type of equations) describing the plate dynamic instability behaviour. Following Bolotin's method, the instability regions are determined from the boundaries of instability, which represents the periodic solution of the differential equations with period T and 2T to the Mathieu equations. The instability regions are determined for uniform, linear and parabolic dynamic in-plane loads using first-order and second-order approximations. Numerical results are also presented to bring out the effects of span to thickness ratio, shear deformation, aspect ratio, boundary conditions and static load factor on the instability regions.  相似文献   

14.
在将悬臂板挠度表示为正交多项式之和的基础上,利用瑞利-里兹方法求解了悬臂板的前几阶振动模态频率及挠度.进而利用瑞利积分求解了其自由振动辐射声场的分布规律。用分区技术的瑞利-里兹方法求解了竖裂纹对悬臂板低阶模态频率的影响,并将计算结果与有限元结果作了对照。实验上用小球撞击法测定了含竖裂纹悬臂板辐射声场的频谱,谱成分与有限元结果基本符合。  相似文献   

15.
In the present study, the stability of a cantilever column resting on an elastic foundation under the action of a uniformly distributed tangential load is discussed. A Winkler type elastic foundation is considered. Moreover, the effect of a lumped mass located in an arbitrary position on the stability of the system when the column is subjected to a partially distributed follower force is investigated. The equations of motion are obtained using the extended Hamilton's principle and the influences of the lumped mass and applied load are included in the equations using the generalized functions theories. Applying the Ritz technique, the resulting equations are transformed into a general eigenvalue problem. The effects of several design parameters such as foundation elastic modulus, ratio of the lumped mass to the column's mass, position of the lumped mass and the distribution model of the follower force are examined. The validity of the present analysis is confirmed by comparing the results with those obtained in literature and excellent agreement is observed. The numerical results reveal that the load distribution length and model have significant effects on the flutter boundaries of the system.  相似文献   

16.
Modal characteristics of a rotating cantilever plate are investigated in the present work. A dynamic modelling method for rectangular plates undergoing prescribed overall motion is employed to derive the equations of motion. The general equations are particularized for the modal analysis of a rotating cantilever plate and dimensionless parameters are identified through dimensional analysis. The effects of the dimensionless parameters on the modal characteristics of the rotating plate are investigated. Incidentally, eigenvalue loci veering and crossing phenomena along with the corresponding modeshape variations are exhibited and discussed.  相似文献   

17.
The dry and wet dynamic characteristics of a vertical and a horizontal cantilever square plate [1] immersed in fluid are discussed from the viewpoint of a linear hydroelasticity theory [2–5]. The surface piercing vertical plate is partially immersed in the fluid and the influence of submerged plate length on the resonance frequencies investigated. For the horizontal plate the influence of submerged depth below the free surface on the resonance frequencies is examined. Incorporated into the theoretical model is a free surface boundary condition allowing wave disturbances to be present. The interaction existing between the vibrating cantilever plate and the free surface is clearly exhibited in the calculated curves describing the generalized hydrodynamic coefficients. A limited comparison between predictions and experimental data [1] is also included.  相似文献   

18.
In this paper vibration and stability of a cantilever beam subjected to vertical and follower loads are investigated. The eigencurves of the beam are presented for various values of the ratio of follower load to vertical and follower loads. The divergence and flutter instability loads of the beam are given for a wide range of the ratio.  相似文献   

19.
The structure of the acoustic field formed in the gap between a rigid plane and an elastic plate excited by a point force is considered. Special attention is given to the frequency range near the coincidence frequency in the case of the small values of the load parameter characterizing the plate loading with the medium. Expressions for the energy fluxes in the plate and in the gap are obtained, and the characteristic length of the energy transfer into the gap, as well as the degree of completeness of such a transfer, is determined.  相似文献   

20.
This paper is concerned with the stability and vibration of a completely free circular plate subjected to a non-conservative edge loading. The eigencurves and mode shapes of the plate are obtained for various values of the non-conservativeness parameter. Numerical results are presented for the asymmetrical mode shapes of the plate. Interesting conclusions are drawn from these results some of which are verified analytically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号