首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 806 毫秒
1.
In this paper, we propose a highly nonlinear dispersion flattened hexagonal photonic crystal fiber (HNDF-HPCF) with nonlinear coefficients as large as 57.5W−1 km−1 at 1.31 μm wavelength for dental optical coherence tomography (OCT) applications. This HNDF-HPCF offers not only large nonlinear coefficient but also very flat dispersion slope and very low confinement losses. Using these characteristics of our proposed PCF, it is shown through simulations by using finite difference method with an anisotropic perfectly matched boundary layer that this PCF offers the efficient supercontinuum (SC) generation for dental OCT applications at 1.31 μm wavelength using a picosecond pulse easily produced by commercially available less expensive laser sources. Coherent length of light source using SC is found 10 μm and the spatial resolutions in the depth direction for dental applications of OCT are found about 6.1 μm for enamel and 6.5 μm for dentin.  相似文献   

2.
In this paper we present the design of a modified hexagonal photonic crystal fiber (PCF) having high birefringence and a near-zero flattened dispersion. Using the finite-difference method (FDM), it is shown that the proposed multiple Gedoped core hexagonal PCF exhibits a high birefringence of order 10−3 and a nearly zero flattened dispersion in the optical coherence tomography (OCT) waveband. In addition, the proposed PCF has a confinement loss of less than 10−8 dB/m at 1.06 μm. PCFs with such properties are considered suitable for both endoscopic OCT and other experimental setups employing 1.06 μm lasers.  相似文献   

3.
In this paper, we report the design of a highly nonlinear dispersion flattened high-index-core square photonic crystal fiber (PCF) for applications in optical coherence tomography (OCT). The finite-difference method with an anisotropic perfectly matched boundary layer is used as a numerical simulation tool. A set of optimized design parameters numerically resulted in a nonlinear coefficient of 79.9W−1 km−1 and a dispersion of −0:186 ps/(nm·km) at a wavelength of approximately 1.06 μm. Owing to its high nonlinear coefficient and flattened dispersion, the PCF is expected to be suitable for broadband supercontinuum generation, which is considered very important in OCT medical applications.  相似文献   

4.
This paper presents a novel technique for the control of chromatic dispersion and confinement loss in hexagonal photonic crystal fibers (H-PCFs). It is demonstrated that it is possible to obtain very low chromatic dispersion of 0 ± 0:38 ps/(nm·km) in the wavelength range of 1.41 to 1.66 μm and confinement loss of less than 0.0001 dB/km from a six ring modified H-PCF (MH-PCF). The higher order dispersion at 1.55 μm is about −0.001 ps/(nm2-km).  相似文献   

5.
This research presents a simple index-guiding square photonic crystal fibers (SPCFs) that has a silica core surrounded by air hole with two different diameters. It is demonstrated that the designed two-different-size hole-arrayed index-guiding SPCFs has a ultra-flattened chromatic dispersion of 0 ± 0.9 ps/(nm·km) in a wavelength range of 1.34 to 1.61 μm and low confinement loss of less than 10−7 dB/m in a wavelength range of 1.2 to 1.7 μm. It has also been shown that the proposed SPCFs show reasonable dispersion tolerance.  相似文献   

6.
We investigate the dispersion property of space filling mode of photonic crystal structures and find a new type of dispersion—structure induced dispersion. By incorporating this new source of dispersion we designed PCF with large normal dispersion ~ 350 ps2/km. Our simulation indicates the dispersion of such fiber changes less than 3% in 1.4-1.7 μm wavelength range and we also show that our design is insensitive to the structure changes.  相似文献   

7.
In this article, a new simplified structure of a highly birefringent chalcogenide As2Se3 glass photonic crystal fiber (PCF) is designed and analyzed by using fully vectorial finite element method. The effective indices, confinement loss, birefringence, and chromatic dispersion of fundamental polarized mode are calculated in the proposed PCF for a wide wavelength range. To maintain the polarization in chalcogenide As2Se3 glass PCF, we enlarged two of the central air holes and reduced two transverse air holes for achieving high birefringence. This helps in creating an effective index difference between the two orthogonal polarization modes. It is also shown that As2Se3 glass PCF provides lower chromatic dispersion and less confinement loss compared to silica PCF of the same structure in wavelength range 1.3 to 1.8 μm and hence such chalcogenide As2Se3 glass PCF have high potential to be used in dispersion compensating and birefringence application in optical communication systems. In addition to this, the polarization mode dispersion (PMD) result of the proposed PCF is also reported.  相似文献   

8.
A novel photonic crystal fiber (PCF) based on a four-hole unit is proposed in order to meet the requirements of high birefringence, negative dispersion and confinement loss in fiber-optic communication. The proposed design has been simulated based on the full vector finite element method (FVFEM) and anisotropic perfectly matched layers (APML). Analysis results show that the proposed PCF can achieve a high birefringence to the order of 10−2 at the wavelength of 1.55 μm, a large negative dispersion over a wide wavelength range and confinement losses lower than 10−9 dB/m simultaneously, which has important applications in polarization-maintaining (PM) fibers, single-polarization single-mode (SPSM) fibers, dispersion compensation fibers and so on.  相似文献   

9.
In this paper, we report a chalcogenide As2Se3 glass photonic crystal fiber (PCF) for dispersion compensating application. We have used the improved fully vectorial effective index method (IFVEIM) for comparing the dispersion properties (negative and zero dispersion) and effective area in hexagonal and square lattice of As2Se3 glass PCF using different wavelength windows. It has been demonstrated that due to their negative dispersion parameter and negative dispersion slope in wavelength range 1.2-2.5 μm, both lattice structures of As2Se3 glass PCFs, with pitch (Λ = 2 μm), can be used as dispersion compensating fibers. Further, design parameters have been obtained to achieve zero dispersion in these fibers. It is also shown that As2Se3 glass PCF provides much higher negative dispersion compared to silica PCF of the same structure, in wavelength range 1.25-1.6 μm and hence such PCF have high potential to be used as a dispersion compensating fiber in optical communication systems.  相似文献   

10.
A new simple structure of an index-guiding highly nonlinear dispersion-flattened square photonic crystal fiber (HNDFSPCF) with low confinement losses is proposed. The results reveal that it is possible to design five-rings HNDF-SPCFs with a flattened dispersion of 0.43 ps/(nm·km), low dispersion slope of -0:02 ps/(nm2·km), low confinement loss of approximately 103 dB/m, and a large nonlinear coefficient of approximately 35W-1 km-1 at 1.55 μm. It is also observed that the confinement loss is less than 10-1 dB/m in the wavelength range of 1.2 –1.7 μm.  相似文献   

11.
In this paper, we proposed a dual-enhanced core photonic crystal fiber (PCF) with high birefringence and ultra-high negative dispersion for dispersion compensation in a polarization maintained optical system. Using finite difference time domain (FDTD) method, we presented dispersion compensating PCF (DC-PCF) with negative dispersion between −1650 ps nm−1 km−1 and −2305 ps nm−1 km−1 in C-band and particularly −2108 ps nm−1 km−1 in λ = 1.55 μm wavelength. By this method, we can compensate dispersion in 124 km long span of a conventional single mode fiber (SMF) by 1 km-long of the DC-PCF at λ = 1.55 μm wavelength. Moreover, fundamental mode of the proposed PCF can induce birefringence about 3.5 × 10−3 at 1.55 μm wavelength.  相似文献   

12.
一种新型混合双包层光子晶体光纤的色散特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
崔艳玲  侯蓝田 《物理学报》2010,59(4):2571-2576
以多极法理论为基础,设计了一种混合双包层结构的光子晶体光纤.通过改变其五层空气孔的四个结构参数(内层空气孔直径、外层空气孔直径、六边形孔间距和八边形孔间距),理论上实现了色散绝对值在144—20 μm的波段内变化仅为125 ps·km-1·nm-1的平坦色散特性.在此情况下对其损耗进行了数值模拟,使所设计的光纤在144—20 μm的宽波段范围内具有小于0005 dB/km的低限制损耗特性. 关键词: 光子晶体光纤 多极法 平坦色散 限制损耗  相似文献   

13.
A c-cut Tm:YAP laser which operated at 1.94 or 1.99 μm is reported in detail. The maximum output power was 20.4 and 19.8 W at the wavelength around 1.99 and 1.94 μm, corresponding to the slope efficiency of 34.3 and 31.5%, respectively. For 1.94 μm operation, with an F-P etalon inserted in the cavity, the output central wavelength was stable around 1.94 μm with about 0.15 nm linewidth. The beam quality factor M 2 was measured to be ∼1.8 for 1.99 μm and ∼1.9 for 1.94 μm.  相似文献   

14.
A new high negative dispersion photonic crystal fiber is proposed. It has double-core structure. The inner core has a circle germanium-doped region. The outer core is formed by removing the 3rd ring air-holes around the core. There are two ring air-holes between the two cores, Diameter of the 1st ring air holes is bigger than that of the 2nd ring air-holes, this can make mode coupling between inner mode and outer mode and showed that the high negative PCF is the result of this structure characteristics. There are honeycomb photonic lattice in the PCF's cladding. The influence of the structure parameters deviated from the design those on the chromatic dispersion are evaluated. When the structure parameters Λ=1.50 μm, dcore=2.10 μm, d1=0.90 μm, d2=0.44 μm and d3=1.04 μm, the dispersion coefficient D is −1320 ps/(nm·km) at 1550 nm. This is a new kind of chromatic dispersion compensation PCF.  相似文献   

15.
In this paper, the wide difference frequency generation (DFG) tuning characteristics around 3.4 μm are investigated by using the index dispersion property of PPLN. With a ytterbium doped fiber laser (YDFL) and an erbium doped fiber laser (EDFL) as the fundamental light sources, our simulation results show that the quasi-phase matching (QPM) wavelength acceptance bandwidth (BW) for the pump is much larger than that for the signal. Although the positions of the broadened QPM pump bands vary with the poling period and the signal wavelength, the corresponding idler tuning ranges center around 3.4 μm. With a signal wavelength of 1.57 μm, an idler tuning range of greater than 170 nm is experimentally obtained in the 30 uniform grating PPLN. When the signal wavelength and the poling period are respectively changed to 1.55 and 29.50 μm, wide DFG tuning operations around 3.4 μm are also achieved with the crystal temperature adjusted to adapt the change.  相似文献   

16.
A new nonlinear dispersion flattened photonic crystal fiber with low confinement loss is proposed. This fiber has threefold symmetry core. The doped region in the core and the big air-holes in the 1st ring can make high nonlinearity in the PCF. And the small air-holes in the 1st ring and the radial increasing diameters air-holes rings in cladding can be used to achieve the dispersion properties of the PCF. We can achieve the optimized optical properties by carefully selecting the PCFs structure parameters. A PCF with flattened dispersion is obtained. The dispersion is less than 0.8 ps/(nm km) and is larger than −0.7 ps/(nm km) from 1.515 μm to 1.622 μm. The nonlinear coefficient is about 12.6456 W−1 km−1, the fundamental mode area is about 10.2579 μm2. The confinement loss is 0.30641 dB/km. This work may be useful for effective design and fabrication of dispersion flattened photonic crystal fibers with high nonlinearities.  相似文献   

17.
张亚妮 《中国物理 B》2013,22(1):14214-014214
A simple type of photonic crystal fiber (PCF) for supercontinuum generation is proposed for the first time. The proposed PCF is composed of a solid silica core and a cladding with square lattice uniform elliptical air holes, which offers not only a large nonlinear coefficient but also a high birefringence and low leakage losses. The PCF with nonlinear coefficient as large as 46 W 1 · km-1 at the wavelength of 1.55 μm and a total dispersion as low as ±2.5 ps · nm-1 · km-1 over an ultra-broad waveband range of the S-C-L band (wavelength from 1.46 μm to 1.625 μm) is optimized by adjusting its structure parameter, such as the lattice constant Λ , the air-filling fraction f , and the air-hole ellipticity η. The novel PCF with ultra-flattened dispersion, highly nonlinear coefficient, and nearly zero negative dispersion slope will offer a possibility of efficient super-continuum generation in telecommunication windows using a few ps pulses.  相似文献   

18.
We demonstrate novel photonic-crystal fibers (PCFs) fabricated of a highly nonlinear glass. Dispersion profiles and nonlinearity of these fibers are tailored with an array of submicron holes in the fiber core. With the PCF structure designed to provide a nonlinearity on the order of 103 W−1 km−1 at the radiation wavelength of 1 μm and a fundamental-mode dispersion profile with zero group-velocity dispersion around 1.19 μm, unamplified femtosecond Cr: forsterite laser pulses are efficiently frequency-converted into the 540-1000-nm wavelength range through solitonic spectral-transformation mechanisms and four-wave mixing.  相似文献   

19.
Lin Zhao  Zhonghua Su  Yong Hao 《Optik》2013,124(24):6574-6576
Aiming at the requirement of high birefringence, a new kind of photonic crystal fiber (PCF) with octagonal and squarely lattice is proposed. In this structure, squarely lattices are added in the inner layer to obtain high birefringence. Birefringence and dispersion as a function of wavelength and size of PCF are analyzed by using Finite Element Method (FEM). Simulation results show that this kind of PCF exhibits high birefringence with a magnitude of 10?3, and one zero dispersion point is obtained simultaneously. In addition, the characteristics of PCF can be tuned by changing the size of fiber.  相似文献   

20.
付博  李曙光  姚艳艳  张磊  张美艳 《中国物理 B》2011,20(2):24209-024209
A kind of improved high birefringence photonic crystal fibre (PCF) is proposed in this paper. The characteristics of birefringence, dispersion and leakage loss are studied by the multipole method. Numerical results show that the improved PCF possesses the properties of a flat dispersion and single mode operation. Moreover, with the operating wavelength λ = 1.55μm, the modal birefringence increases greatly in comparison with that of the original PCF, and the leakage loss is about 104 times smaller than that of the original PCF because the modification gives rise to the strong confinement of guided modes. It is expected that the improved PCF can be used as high birefringence and dispersion flattened fibres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号