首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metal carbide compound containing highly charged C2(q-) (q = 5, 6) moiety is rather scarce. We show by means of density functional calculations that an unprecedented mu4-C2(6-) anion can viably exist as an endohedral [Sc4C2]6+ cluster in the endofullerene Sc4C2@C80. The electronic structure, ionization energy, electron affinity, 13C NMR chemical shifts, vibrational frequencies, and electrochemical redox potentials of this unique endofullerene have been predicted to assist future experimental characterization.  相似文献   

2.
We analyze the electronic structure of carbide endohedral metallofullerenes of the type Sc(2)C(2)@C(82) and study the possibility of rotation of the encapsulated Sc(2)C(2) moiety in the interior of the cage. Moreover, we rationalize the higher abundance of M(2)C(2)@C(82) (M = Sc, Y) in which the metal-carbide cluster is encapsulated in the C(3v)-C(82):8 carbon cage with respect to other carbides of the same family on the basis of the formal transfer of four electrons from the cluster to the cage and sizeable (LUMO-3)-(LUMO-2) gap in the empty cages. This rule also applies to all those endohedral metallofullerenes in which the encapsulated cluster transfers four electrons to the carbon cage as, for example, the reduced [M@C(82)](-) systems (M = group 3 or lanthanide metal ion).  相似文献   

3.
X-ray analyses of the cocrystals of a series of carbide cluster metallofullerenes Sc(2)C(2)@C(2n) (n = 40-42) with cobalt(II) octaethylporphyrin present new insights into the molecular structures and cluster-cage interactions of these less-explored species. Along with the unambiguous identification of the cage structures for the three isomers of Sc(2)C(2)@C(2v)(5)-C(80), Sc(2)C(2)@C(3v)(8)-C(82), and Sc(2)C(2)@D(2d)(23)-C(84), a clear correlation between the cluster strain and cage size is observed in this series: Sc-Sc distances and dihedral angles of the bent cluster increase along with cage expansion, indicating that the bending strain within the cluster makes it pursue a planar structure to the greatest degree possible. However, the C-C distances within Sc(2)C(2) remain unchanged when the cage expands, perhaps because of the unusual bent structure of the cluster, preventing contact between the cage and the C(2) unit. Moreover, analyses revealed that larger cages provide more space for the cluster to rotate. The preferential formation of cluster endohedral metallofullerenes for scandium might be associated with its small ionic radius and the strong coordination ability as well.  相似文献   

4.
Detailed study on Sc(2)C(70) series has been performed based on fully screening for C(70) tetra- and hexa- anions. With a combined methodology of quantum chemistry and statistical mechanics, our calculation results reveal that the Sc(2)C(70), which was proposed as the first metal-carbide endohedral metallofullerene with a non-isolated pentagon rule (non-IPR) cage (Sc(2)C(2)@C(68):6073_C(2v)), is in fact a C(70) non-IPR metallofullerene structure (Sc(2)@C(70):7854_C(2v)) with three pair of pentagon adjacency thanks to its significant thermodynamic and kinetic stability. According to the natural bond analysis and orbital interaction diagram, each scandium atom should only transfer two 4s electrons to the carbon cages and the valence state of Sc(2)@C(70) is (Sc(2+))(2)@C(70) (4-). In addition, the simulation of UV-Vis-NIR spectrum for Sc(2)@C(70):7854_C(2v) shows good accordance to the experimental spectrum.  相似文献   

5.
A Sc(2)C(84) isomer, previously assumed to be Sc(2)@C(84), is unambiguously identified as a new carbide cluster metallofullerene Sc(2)C(2)@C(s)(6)-C(82) using both NMR spectroscopy and X-ray crystallography. The (13)C-nuclei signal of the internal C(2)-unit was observed at 244.4 ppm with a 15% (13)C-enriched sample. Temperature-dependent dynamic motion of the internal Sc(2)C(2) cluster is also revealed with NMR spectrometry. Moreover, the chemical property of Sc(2)C(2)@C(s)(6)-C(82) is investigated for the first time using 3-triphenylmethyl-5-oxazolidinone (1) which provides a 1,3-dipolar reagent under heating. Regarding the low cage symmetry of this endohedral which contains 44 types of nonequivalent cage carbons, it is surprising to find that only one monoadduct isomer is formed in the reaction. Single-crystal X-ray results of the isolated pyrrolidino derivative Sc(2)C(2)@C(s)(6)-C(82)N(CH(2))(2)Trt (2) reveal that the addition takes place at a [6,6]-bond junction, which is far from either of the two Sc atoms. Such a highly regioselective addition pattern can be reasonably interpreted by analyzing the frontier molecular orbitals of the endohedral. Electronic and electrochemical investigations reveal that adduct 2 has a larger highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap than pristine Sc(2)C(2)@C(s)(6)-C(82); accordingly, it is more stable.  相似文献   

6.
Fullerene crystals or films have drawn much interest because they are good candidates for use in the construction of electronic devices. The results of theoretical calculations revealed that the conductivity properties of I(h)-C(80) endohedral metallofullerenes (EMFs) vary depending on the encapsulated metal species. We experimentally investigated the solid-state structures and charge-carrier mobilities of I(h)-C(80) EMFs La(2)@C(80), Sc(3)N@C(80), and Sc(3)C(2)@C(80). The thin film of Sc(3)C(2)@C(80) exhibits a high electron mobility μ = 0.13 cm(2) V(-1) s(-1) under normal temperature and atmospheric pressure, as determined using flash-photolysis time-resolved microwave conductivity measurements. This electron mobility is 2 orders of magnitude higher than the mobility of La(2)@C(80) or Sc(3)N@C(80).  相似文献   

7.
The nanoscale parameters of metal clusters and lattices have a crucial influence on the macroscopic properties of materials. Herein, we provide a detailed study on the size and shape of isolated yttrium carbide clusters in different fullerene cages. A family of diyttrium endohedral metallofullerenes with the general formula of Y(2)C(2n) (n = 40-59) are reported. The high field (13)C nuclear magnetic resonance (NMR) and density functional theory (DFT) methods are employed to examine this yttrium carbide cluster in certain family members, Y(2)C(2)@D(5)(450)-C(100), Y(2)C(2)@D(3)(85)-C(92), Y(2)C(2)@C(84), Y(2)C(2)@C(3v)(8)-C(82), and Y(2)C(2)@C(s)(6)-C(82). The results of this study suggest that decreasing the size of a fullerene cage with the same (Y(2)C(2))(4+) cluster results in nanoscale fullerene compression (NFC) from a nearly linear stretched geometry to a constrained "butterfly" structure. The (13)C NMR chemical shift and scalar (1)J(YC) coupling parameters provide a very sensitive measure of this NFC effect for the (Y(2)C(2))(4+) cluster. The crystal structural parameters of a previously reported metal carbide, Y(2)C(3) are directly compared to the (Y(2)C(2))(4+) cluster in the current metallofullerene study.  相似文献   

8.
Small hydrocarbon complexes (X@cage) incorporating cage-centered endohedral atoms and ions (X = H(+), H, He, Ne, Ar, Li(0,+), Be(0,+,2+), Na(0,+), Mg(0,+,2+)) have been studied at the B3LYP/6-31G(d) hybrid HF/DFT level of theory. No tetrahedrane (C(4)H(4), T(d)()) endohedral complexes are minima, not even with the very small hydrogen atom or beryllium dication. Cubane (C(8)H(8), O(h)()) and bicyclo[2.2.2]octane (C(8)H(14), D(3)(h)()) minima are limited to encapsulating species smaller than Ne and Na(+). Despite its intermediate size, adamantane (C(10)H(16), T(d)()) can enclose a wide variety of endohedral atoms and ions including H, He, Ne, Li(0,+), Be(0,+,2+), Na(0,+), and Mg(2+). In contrast, the truncated tetrahedrane (C(12)H(12), T(d)()) encapsulates fewer species, while the D(4)(d)() symmetric C(16)H(16) hydrocarbon cage (see Table of Contents graphic) encapsulates all but the larger Be, Mg, and Mg(+) species. The host cages have more compact geometries when metal atoms, rather than cations, are inside. This is due to electron donation from the endohedral metals into C-C bonding and C-H antibonding cage molecular orbitals. The relative stabilities of endohedral minima are evaluated by comparing their energies (E(endo)) to the sum of their isolated components (E(inc) = E(endo) - E(cage) - E(x)) and to their exohedral isomer energies (E(isom) = E(endo) - E(exo)). Although exohedral binding is preferred to endohedral encapsulation without exception (i.e., E(isom) is always exothermic), Be(2+)@C(10)H(16) (T(d)(); -235.5 kcal/mol), Li(+)@C(12)H(12) (T(d)(); 50.2 kcal/mol), Be(2+)@C(12)H(12) (T(d)(); -181.2 kcal/mol), Mg(2+)@C(12)H(12) (T(d)(); -45.0 kcal/mol), Li(+)@C(16)H(16) (D(4)(d)(); 13.3 kcal/mol), Be(+)@C(16)H(16) (C(4)(v)(); 31.8 kcal/mol), Be(2+)@C(16)H(16) (D(4)(d)(); -239.2 kcal/mol), and Mg(2+)@C(16)H(16) (D(4)(d)(); -37.7 kcal/mol) are relatively stable as compared to experimentally known He@C(20)H(20) (I(h)()), which has an E(inc) = 37.9 kcal/mol and E(isom) = -35.4 kcal/mol. Overall, endohedral cage complexes with low parent cage strain energies, large cage internal cavity volumes, and a small, highly charged guest species are the most viable synthetic targets.  相似文献   

9.
Little is known about the chemical properties of carbide cluster metallofullerenes (CCMFs). Here we report the photochemical reaction of a newly assigned CCMF Sc(2)C(2)@C(2v)(5)-C(80) with 2-adamantane-2,3-[3H]-diazirine (AdN(2), 1), which provides a carbene reagent under irradiation. Five monoadduct isomers (2a-2e), with respective abundances of 20%, 40%, 25%, 5%, and 10%, were isolated and characterized with a combination of experimental techniques including unambiguous single-crystal X-ray crystallography. Results show that the two Sc atoms of the bent Sc(2)C(2) cluster tend to move in most cases, whereas the C(2)-unit is almost fixed. Accordingly, it is difficult to explain the addition patterns by considering the strain and charge density on the cage with a fixed cluster, and thus a moving cluster may account for the addition patterns. These results show that the situation of CCMFs is more complicated than those in other metallofullerenes. Furthermore, a thermal isomerization process from 2b to 2c was observed, confirming that the most abundant isomer 2b is a kinetically favored adduct. Finally, it is revealed that the electronic and electrochemical properties of pristine Sc(2)C(2)@C(2v)(5)-C(80) have been markedly altered by exohedral modification.  相似文献   

10.
Single-crystal X-ray diffraction studies of Sc(2)(μ(2)-S)@C(s)(6)-C(82)·Ni(II)(OEP)·2C(6)H(6) and Sc(2)(μ(2)-S)@C(3v)(8)-C(82)·Ni(II)(OEP)·2C(6)H(6) reveal that both contain fully ordered fullerene cages. The crystallographic data for Sc(2)(μ(2)-S)@C(s)(6)-C(82)·Ni(II)(OEP)·2C(6)H(6) show two remarkable features: the presence of two slightly different cage sites and a fully ordered molecule Sc(2)(μ(2)-S)@C(s)(6)-C(82) in one of these sites. The Sc-S-Sc angles in Sc(2)(μ(2)-S)@C(s)(6)-C(82) (113.84(3)°) and Sc(2)(μ(2)-S)@C(3v)(8)-C(82) differ (97.34(13)°). This is the first case where the nature and structure of the fullerene cage isomer exerts a demonstrable effect on the geometry of the cluster contained within. Computational studies have shown that, among the nine isomers that follow the isolated pentagon rule for C(82), the cage stability changes markedly between 0 and 250 K, but the C(s)(6)-C(82) cage is preferred at temperatures ≥250 °C when using the energies obtained with the free encapsulated model (FEM). However, the C(3v)(8)-C(82) cage is preferred at temperatures ≥250 °C using the energies obtained by rigid rotor-harmonic oscillator (RRHO) approximation. These results corroborate the fact that both cages are observed and likely to trap the Sc(2)(μ(2)-S) cluster, whereas earlier FEM and RRHO calculations predicted only the C(s)(6)-C(82) cage is likely to trap the Sc(2)(μ(2)-O) cluster. We also compare the recently published electrochemistry of the sulfide-containing Sc(2)(μ(2)-S)@C(s)(6)-C(82) to that of corresponding oxide-containing Sc(2)(μ(2)-O)@C(s)(6)-C(82).  相似文献   

11.
Quantum-chemical calculations using DFT (BP86) and ab initio methods (MP2, SCS-MP2) have been carried out for the endohedral fullerenes Ng2@C60 (Ng=He-Xe). The nature of the interactions has been analyzed with charge- and energy-partitioning methods and with the topological analysis of the electron density (Atoms-in-Molecules (AIM)). The calculations predict that the equilibrium geometries of Ng2@C60 have D3d symmetry when Ng=Ne, Ar, Kr, while the energy-minimum structure of Xe2@C60 has D5d symmetry. The precession movement of He2 in He2@C60 has practically no barrier. The Ng--Ng distances in Ng2@C60 are much shorter than in free Ng2. All compounds Ng2@C60 are thermodynamically unstable towards loss of the noble gas atoms. The heavier species Ar2@C60, Kr2@C60, and Xe2@C60 are high energy compounds which are at the BSSE corrected SCS-MP2/TZVPP level in the range 96.7-305.5 kcal mol(-1) less stable than free C60+2 Ng. The AIM method reveals that there is always an Ng--Ng bond path in Ng2@C60. There are six Ng--C bond paths in (D3d) Ar2@C60, Kr2@C60, and Xe2@C60, whereas the lighter D3d homologues He2@C60 and Ne2@C60 have only three Ng--C2 paths. The calculated charge distribution and the orbital analysis clearly show that the bonding situation in Xe2@C60 significantly differs from those of the lighter homologues. The atomic partial charge of the [Xe2] moiety is +1.06, whereas the charges of the lighter dimers [Ng2] are close to zero. The a2u HOMO of (D3d) Xe2@C60 in the 1A1g state shows a large mixing of the highest lying occupied sigma* orbital of [Xe2] and the orbitals of the C60 cage. There is only a small gap between the a2u HOMO of Xe2@C60 and the eu LUMO and the a2u LUMO+1. The calculations show that there are several triplet states which are close in energy to each other and to the 1A1g state. The bonding analysis suggests that the interacting species in Xe2@C60 are the charged species Xe2q+ and C60q-, where 1相似文献   

12.
We show by means of density functional calculations that the previously synthesized metallofullerene Ti2C80 does not take the form of Ti2@C80, but is a titanium carbide endohedral metallofullerene, Ti2C2@C78, that has a C78(6-)(D3h) cage which follows faithfully the stable closed-shell electronic rule.  相似文献   

13.
Unambiguous X-ray crystallographic results of the carbene adduct of Sc(2)C(82) reveal a new carbide cluster metallofullerene with the unexpected C(2v)(5)-C(80) cage, that is, Sc(2)C(2)@C(2v)(5)-C(80). More interestingly, DFT calculations and NMR results disclose that the dynamic motion of the internal Sc(2)C(2) cluster depends strongly on temperature. At 293 K, the cluster is fixed inside the cage with two nonequivalent Sc atoms on the mirror plane, thereby leading to C(s) symmetry of the whole molecule. However, when the temperature increases to 413 K, the (13)C and (45)Sc NMR spectra show that the cluster rotates rapidly inside the C(2v)(5)-C(80) cage, featuring two equivalent Sc atoms and weaker metal-cage interactions.  相似文献   

14.
A family of highly stable (poly)perfluoroalkylated metallic nitride cluster fullerenes was prepared in high-temperature reactions and characterized by spectroscopic (MS, (19)F NMR, UV-vis/NIR, ESR), structural and electrochemical methods. For two new compounds, Sc(3)N@C(80)(CF(3))(10) and Sc(3)N@C(80)(CF(3))(12,) single crystal X-ray structures are determined. Addition pattern guidelines for endohedral fullerene derivatives with bulky functional groups are formulated as a result of experimental ((19)F NMR spectroscopy and single crystal X-ray diffraction) studies and exhaustive quantum chemical calculations of the structures of Sc(3)N@C(80)(CF(3))(n) (n = 2-16). Electrochemical studies revealed that Sc(3)N@C(80)(CF(3))(n) derivatives are easier to reduce than Sc(3)N@C(80), the shift of E(1/2) potentials ranging from +0.11 V (n = 2) to +0.42 V (n = 10). Stable radical anions of Sc(3)N@C(80)(CF(3))(n) were generated in solution and characterized by ESR spectroscopy, revealing their (45)Sc hyperfine structure. Facile further functionalizations via cycloadditions or radical additions were achieved for trifluoromethylated Sc(3)N@C(80) making them attractive versatile platforms for the design of molecular and supramolecular materials of fundamental and practical importance.  相似文献   

15.
Hauser C  Bill E  Holm RH 《Inorganic chemistry》2002,41(6):1615-1624
A new series of cubane-type [VFe(3)S(4)](z)() clusters (z = 1+, 2+, 3+) has been prepared as possible precursor species for clusters related to those present in vanadium-containing nitrogenase. Treatment of [(HBpz(3))VFe(3)S(4)Cl(3)](2)(-) (2, z = 2+), protected from further reaction at the vanadium site by the tris(pyrazolyl)hydroborate ligand, with ferrocenium ion affords the oxidized cluster [(HBpz(3))VFe(3)S(4)Cl(3)](1)(-) (3, z = 3+). Reaction of 2 with Et(3)P results in chloride substitution to give [(HBpz(3))VFe(3)S(4)(PEt(3))(3)](1+) (4, z = 2+). Reaction of 4 with cobaltocene reduced the cluster with formation of the edge-bridged double-cubane [(HBpz(3))(2)V(2)Fe(6)S(8)(PEt(3))(4)] (5, z = 1+, 1+), which with excess chloride underwent ligand substitution to afford [(HBpz(3))(2)V(2)Fe(6)S(8)Cl(4)](4)(-) (6, z = 1+, 1+). X-ray structures of (Me(4)N)[3], [4](PF(6)), 5, and (Et(4)N)(4)[6] x 2MeCN are described. Cluster 5 is isostructural with previously reported [(Cl(4)cat)(2)(Et(3)P)(2)Mo(2)Fe(6)S(8)(PEt(3))(4)] and contains two VFe(3)S(4) cubanes connected across edges by a Fe(2)S(2) rhomb in which the bridging Fe-S distances are shorter than intracubane Fe-S distances. M?ssbauer (2-5), magnetic (2-5), and EPR (2, 4) data are reported and demonstrate an S = 3/2 ground state for 2 and 4 and a diamagnetic ground state for 3. Analysis of (57)Fe isomer shifts based on an empirical correlation between shift and oxidation state and appropriate reference shifts results in two conclusions. (i) The oxidation 2 --> 3 + e(-) results in a change in electron density localized largely or completely on the Fe(3) subcluster and associated sulfur atoms. (ii) The most appropriate charge distributions are [V(3+)Fe(3+)Fe(2+)(2)S(4)](2+) (Fe(2.33+)) for 1, 2, and 4 and [V(3+)Fe(3+)(2)Fe(2+)S(4)](3+) (Fe(2.67+)) for 3 and [V(2)Fe(6)S(8)(SEt)(9)](3+). Conclusion i applies to every MFe(3)S(4) cubane-type cluster thus far examined in different redox states at parity of cluster ligation. The formalistic charge distributions are regarded as the best current approximations to electron distributions in these delocalized species. The isomer shifts require that iron atoms are mixed-valence in each cluster.  相似文献   

16.
The La2@C72 and Sc2@C72 metallofullerenes have been characterized by systematic density functional computations. On the basis of the most stable geometry of 39 C72 hexaanions and the computed energies of the best endofullerene candidates, the experimentally isolated La2@C72 species was assigned the structure coded #10611. The good agreement between the computed and the experimental 13C chemical shifts for La2@C72 further supports the literature assignment (Kato, H.; Taninaka, A.; Sugai, T.; Shinohara, H. J. Am. Chem. Soc. 2003, 125, 7782). The geometry, IR vibrational frequencies, and 13C chemical shifts of Sc2@C72 were predicted to assist its future experimental characterization.  相似文献   

17.
We describe the first example of scandium dimetallofullerenes, Sc(2)@C(3v)(8)-C(82), which has the same cage as the previously assigned scandium carbide cluster fullerene Sc(2)C(2)@C(3v)(8)-C(82) but they exhibit distinctly different electronic configurations and electronic behaviours, confirming the drastic influence of the internal C(2) unit.  相似文献   

18.
Cover Picture     
The cover picture shows a section of the electron charge density of the first metal carbide endohedral metallofullerene (Sc(2)C(2))@C(84) obtained from a synchrotron X-ray powder diffraction study by the maximum entropy method (MEM). The several density maxima, which correspond to scandium and carbon atoms, are clearly seen inside the C(84) carbon cage. The MEM charge density distribution also reveals that the C(84) cage has D(2d) symmetry (no. 23) and that the C(2) axis is parallel to the <100> face-centered cubic (fcc) direction of the unit cell. As a consequence of the site symmetry being 4mm, the C(2) axis of (Sc(2)C(2))@C(84) is oriented to six equivalent <100> directions and shows a merohedral disorder. The resultant Sc small middle dot small middle dot small middle dotSc distances and C-C bond lengths of the Sc(2)C(2) cluster are 0.429(2) and 0.142(6) nm, respectively. The observed C-C bond length is between that of a typical single and a double bond, and is very close to that of the C-C bond (0.143 nm) combining two pentagons in a C(60) molecule. More about this fascinating structure can be found in the contribution by Shinohara and co-workers on p. 397 ff.  相似文献   

19.
Bis-functionalization of endohedral metallofullerene La(2)@C(80) by carbene addition is reported herein. Adducts were characterized using spectroscopic and single-crystal X-ray structure analyses. Crystallographic data for bisadduct La(2)@C(80)(CClPh)Ad (3, Ad = adamantylidene) revealed that both carbene additions occur at the 6,6-bond junction on the C(80) cage with ring cleavages and that La atoms are positioned collinearly with spiro carbons. It is noteworthy that the La-La distance in 3 is highly elongated by carbene bis-functionalization compared to the distance in pristine La(2)@C(80) and reported functionalized derivatives. The metal positions were confirmed through density functional calculations.  相似文献   

20.
The endohedral fullerene Sc(3)NC@C(80)-I(h) has been synthesized and characterized; it has an unprecedented planar quinary cluster in a fullerene cage. It is also the first chemical compound in which the presence of an unprecedented (NC)(3-) trianion has been disclosed. The fascinating intramolecular dynamics in Sc(3)NC@C(80)-I(h) enables the whole molecule to display high polarity and promising ferroelectricity. This finding inspires the possibility that such a planar quinary cluster may be useful in constructing many other endohedral fullerenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号