首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Applying the boundedness on weighted Lebesgue spaces of the maximal singular integral operator S * related to the Carleson?CHunt theorem on almost everywhere convergence, we study the boundedness and compactness of pseudodifferential operators a(x, D) with non-regular symbols in ${L^\infty(\mathbb{R}, V(\mathbb{R})), PC(\overline{\mathbb{R}}, V(\mathbb{R}))}$ and ${\Lambda_\gamma(\mathbb{R}, V_d(\mathbb{R}))}$ on the weighted Lebesgue spaces ${L^p(\mathbb{R},w)}$ , with 1?< p <? ?? and ${w\in A_p(\mathbb{R})}$ . The Banach algebras ${L^\infty(\mathbb{R}, V(\mathbb{R}))}$ and ${PC(\overline{\mathbb{R}}, V(\mathbb{R}))}$ consist, respectively, of all bounded measurable or piecewise continuous ${V(\mathbb{R})}$ -valued functions on ${\mathbb{R}}$ where ${V(\mathbb{R})}$ is the Banach algebra of all functions on ${\mathbb{R}}$ of bounded total variation, and the Banach algebra ${\Lambda_\gamma(\mathbb{R}, V_d(\mathbb{R}))}$ consists of all Lipschitz ${V_d(\mathbb{R})}$ -valued functions of exponent ${\gamma \in (0,1]}$ on ${\mathbb{R}}$ where ${V_d(\mathbb{R})}$ is the Banach algebra of all functions on ${\mathbb{R}}$ of bounded variation on dyadic shells. Finally, for the Banach algebra ${\mathfrak{A}_{p,w}}$ generated by all pseudodifferential operators a(x, D) with symbols ${a(x, \lambda) \in PC(\overline{\mathbb{R}}, V(\mathbb{R}))}$ on the space ${L^p(\mathbb{R}, w)}$ , we construct a non-commutative Fredholm symbol calculus and give a Fredholm criterion for the operators ${A \in \mathfrak{A}_{p,w}}$ .  相似文献   

2.
Let qp s be a power of a prime number p and let ${\mathbb {F}_{\rm q}}$ be a finite field with q elements. This paper aims to demonstrate the utility and relation of composed products to other areas such as the factorization of cyclotomic polynomials, construction of irreducible polynomials, and linear recurrence sequences over ${\mathbb {F}_{\rm q}}$ . In particular we obtain the explicit factorization of the cyclotomic polynomial ${\Phi_{2^nr}}$ over ${\mathbb {F}_{\rm q}}$ where both r ≥ 3 and q are odd, gcd(q, r) = 1, and ${n\in \mathbb{N}}$ . Previously, only the special cases when r = 1, 3, 5, had been achieved. For this we make the assumption that the explicit factorization of ${\Phi_r}$ over ${\mathbb {F}_{\rm q}}$ is given to us as a known. Let ${n = p_1^{e_1}p_2^{e_2}\cdots p_s^{e_s}}$ be the factorization of ${n \in \mathbb{N}}$ into powers of distinct primes p i , 1 ≤ i ≤ s. In the case that the multiplicative orders of q modulo all these prime powers ${p_i^{e_i}}$ are pairwise coprime, we show how to obtain the explicit factors of ${\Phi_{n}}$ from the factors of each ${\Phi_{p_i^{e_i}}}$ . We also demonstrate how to obtain the factorization of ${\Phi_{mn}}$ from the factorization of ${\Phi_n}$ when q is a primitive root modulo m and ${{\rm gcd}(m, n) = {\rm gcd}(\phi(m),{\rm ord}_n(q)) = 1.}$ Here ${\phi}$ is the Euler’s totient function, and ord n (q) denotes the multiplicative order of q modulo n. Moreover, we present the construction of a new class of irreducible polynomials over ${\mathbb {F}_{\rm q}}$ and generalize a result due to Varshamov (Soviet Math Dokl 29:334–336, 1984).  相似文献   

3.
Let $F$ be a global function field over a finite constant field and $\infty $ a place of $F$ . The ring $A$ of functions regular away from $\infty $ in $F$ is a Dedekind domain. For such $A$ Goss defined a $\zeta $ -function which is a continuous function from $\mathbb{Z }_p$ to the ring of entire power series with coefficients in the completion $F_\infty $ of $F$ at $\infty $ . He asks what one can say about the distribution of the zeros of the entire function at any parameter of $\mathbb{Z }_p$ . In the simplest case $A$ is the polynomial ring in one variable over a finite field. Here the question was settled completely by J. Sheats, after previous work by J. Diaz-Vargas, B. Poonen and D. Wan: for any parameter in $\mathbb{Z }_p$ the zeros of the power series have pairwise different valuations and they lie in  $F_\infty $ . In the present article we completely determine the distribution of zeros for the simplest case different from polynomial rings, namely $A=\mathbb{F }\,\!{}_2[x,y]/(y^2+y+x^3+x+1)$ —this $A$ has class number $1$ , it is the affine coordinate ring of a supersingular elliptic curve and the place $\infty $ is $\mathbb{F }\,\!{}_2$ -rational. The answer is slightly different from the above case of polynomial rings. For arbitrary $A$ such that $\infty $ is a rational place of $F$ , we describe a pattern in the distribution of zeros which we observed in some computational experiments. Finally, we present some precise conjectures on the fields of rationality of these zeroes for one particular hyperelliptic $A$ of genus  $2$ .  相似文献   

4.
We define an analogue of the Casimir element for a graded affine Hecke algebra $ \mathbb{H} $ , and then introduce an approximate square-root called the Dirac element. Using it, we define the Dirac cohomology H D (X) of an $ \mathbb{H} $ -module X, and show that H D (X) carries a representation of a canonical double cover of the Weyl group $ \widetilde{W} $ . Our main result shows that the $ \widetilde{W} $ -structure on the Dirac cohomology of an irreducible $ \mathbb{H} $ -module X determines the central character of X in a precise way. This can be interpreted as p-adic analogue of a conjecture of Vogan for Harish-Chandra modules. We also apply our results to the study of unitary representations of $ \mathbb{H} $ .  相似文献   

5.
We consider the spaces A p ( $\mathbb{T}^m $ ) of functions f on the m-dimensional torus $\mathbb{T}^m $ such that the sequence of Fourier coefficients $\hat f = \{ \hat f(k),k \in \mathbb{Z}^m \} $ belongs to l p (? m ), 1 ≤ p < 2. The norm on A p ( $\mathbb{T}^m $ ) is defined by $\left\| f \right\|_{A_p (\mathbb{T}^m )} = \left\| {\hat f} \right\|_{l^p (\mathbb{Z}^m )} $ . We study the rate of growth of the norms $\left\| {e^{i\lambda \phi } } \right\|_{A_p (\mathbb{T}^m )} $ as |λ| → ∞, λ ∈ ?, for C 1-smooth real functions φ on $\mathbb{T}^m $ (the one-dimensional case was investigated by the author earlier). The lower estimates that we obtain have direct analogs for the spaces A p (? m ).  相似文献   

6.
7.
By a $\mathfrak{B}$ -regular variety, we mean a smooth projective variety over $\mathbb{C}$ admitting an algebraic action of the upper triangular Borel subgroup $\mathfrak{B} \subset {\text{SL}}_{2} {\left( \mathbb{C} \right)}$ such that the unipotent radical in $\mathfrak{B}$ has a unique fixed point. A result of Brion and the first author [4] describes the equivariant cohomology algebra (over $\mathbb{C}$ ) of a $\mathfrak{B}$ -regular variety X as the coordinate ring of a remarkable affine curve in $X \times \mathbb{P}^{1}$ . The main result of this paper uses this fact to classify the $\mathfrak{B}$ -invariant subvarieties Y of a $\mathfrak{B}$ -regular variety X for which the restriction map i Y : H *(X) → H *(Y) is surjective.  相似文献   

8.
This paper deals with the Cauchy problem for a shallow water equation with high-order nonlinearities, y t +u m+1 y x +bu m u x y=0, where b is a constant, $m\in \mathbb{N}$ , and we have the notation $y:= (1-\partial_{x}^{2}) u$ , which includes the famous Camassa–Holm equation, the Degasperis–Procesi equation, and the Novikov equation as special cases. The local well-posedness of strong solutions for the equation in each of the Sobolev spaces $H^{s}(\mathbb{R})$ with $s>\frac{3}{2}$ is obtained, and persistence properties of the strong solutions are studied. Furthermore, although the $H^{1}(\mathbb{R})$ -norm of the solution to the nonlinear model does not remain constant, the existence of its weak solutions in each of the low order Sobolev spaces $H^{s}(\mathbb{R})$ with $1<s<\frac{3}{2}$ is established, under the assumption $u_{0}(x)\in H^{s}(\mathbb{R})\cap W^{1,\infty}(\mathbb{R})$ . Finally, the global weak solution and peakon solution for the equation are also given.  相似文献   

9.
We consider a closed semi-algebraic set ${X \subset \mathbb{R}^n}$ and a C 2 semi-algebraic function ${f : \mathbb{R}^n \rightarrow\mathbb{R}}$ such that ${f_{\vert X}}$ has a finite number of critical points. We relate the topology of X to the topology of the sets ${X \cap \{ f * \alpha \}}$ , where ${* \in \{\le,=,\ge \}}$ and ${\alpha \in \mathbb{R}}$ , and the indices of the critical points of ${f_{\vert X}}$ and ${-f_{\vert X}}$ . We also relate the topology of X to the topology of the links at infinity of the sets ${X \cap \{ f * \alpha\}}$ and the indices of these critical points. We give applications when ${X=\mathbb{R}^n}$ and when f is a generic linear function.  相似文献   

10.
Let ${{\mathbb H}_n, n \geq 1}$ , be the near 2n-gon defined on the 1-factors of the complete graph on 2n?+?2 vertices, and let e denote the absolutely universal embedding of ${{\mathbb H}_n}$ into PG(W), where W is a ${\frac{1}{n+2} \left(\begin{array}{c}2n+2 \\ n+1\end{array}\right)}$ -dimensional vector space over the field ${{\mathbb F}_2}$ with two elements. For every point z of ${{\mathbb H}_n}$ and every ${i \in {\mathbb N}}$ , let Δ i (z) denote the set of points of ${{\mathbb H}_n}$ at distance i from z. We show that for every pair {x, y} of mutually opposite points of ${{\mathbb H}_n, W}$ can be written as a direct sum ${W_0 \oplus W_1 \oplus \cdots \oplus W_n}$ such that the following four properties hold for every ${i \in \{0,\ldots,n \}}$ : (1) ${\langle e(\Delta_i(x) \cap \Delta_{n-i}(y)) \rangle = {\rm PG}(W_i)}$ ; (2) ${\left\langle e \left( \bigcup_{j \leq i} \Delta_j(x) \right) \right\rangle = {\rm PG}(W_0 \oplus W_1 \oplus \cdots \oplus W_i)}$ ; (3) ${\left\langle e \left( \bigcup_{j \leq i} \Delta_j(y) \right) \right\rangle = {\rm PG}(W_{n-i}\oplus W_{n-i+1} \oplus \cdots \oplus W_n)}$ ; (4) ${\dim(W_i) = |\Delta_i(x) \cap \Delta_{n-i}(y)| = \left(\begin{array}{c}n \\ i\end{array}\right)^2 - \left(\begin{array}{c}n \\ i-1\end{array}\right) \cdot \left(\begin{array}{c}n \\ i+1\end{array}\right)}$ .  相似文献   

11.
In this paper we are concerned with the classification of the subsets A of ${\mathbb{Z}_p}$ which occur as images ${f(\mathbb{Z}_p^r)}$ of polynomial functions ${f:\mathbb{Z}_p^r\to \mathbb{Z}_p}$ , limiting ourselves to compact-open subsets (i.e. finite unions of open balls). We shall prove three main results: (i) Every compact-open ${A\subset \mathbb{Z}_p}$ is of the shape ${A=f(\mathbb{Z}_p^r)}$ for suitable r and ${f\in\mathbb{Z}_p[X_1,\ldots ,X_r]}$ . (ii) For each r 0 there is a compact-open A such that in (i) we cannot take r < r 0. (iii) For any compact-open set ${A\subset \mathbb{Z}_p}$ there exists a polynomial ${f\in\mathbb{Q}_p[X]}$ such that ${f(\mathbb{Z}_p)=A}$ . We shall also discuss in more detail which sets A can be represented as ${f(\mathbb{Z}_p)}$ for a polynomial ${f\in\mathbb{Z}_p[X]}$ in a single variable.  相似文献   

12.
Let ${\nu_{d} : \mathbb{P}^{r} \rightarrow \mathbb{P}^{N}, N := \left( \begin{array}{ll} r + d \\ \,\,\,\,\,\, r \end{array} \right)- 1,}$ denote the degree d Veronese embedding of ${\mathbb{P}^{r}}$ . For any ${P\, \in \, \mathbb{P}^{N}}$ , the symmetric tensor rank sr(P) is the minimal cardinality of a set ${\mathcal{S} \subset \nu_{d}(\mathbb{P}^{r})}$ spanning P. Let ${\mathcal{S}(P)}$ be the set of all ${A \subset \mathbb{P}^{r}}$ such that ${\nu_{d}(A)}$ computes sr(P). Here we classify all ${P \,\in\, \mathbb{P}^{n}}$ such that sr(P) <  3d/2 and sr(P) is computed by at least two subsets of ${\nu_{d}(\mathbb{P}^{r})}$ . For such tensors ${P\, \in\, \mathbb{P}^{N}}$ , we prove that ${\mathcal{S}(P)}$ has no isolated points.  相似文献   

13.
A Gizatullin surface is a normal affine surface V over $ \mathbb{C} $ , which can be completed by a zigzag; that is, by a linear chain of smooth rational curves. In this paper we deal with the question of uniqueness of $ \mathbb{C}^{ * } $ -actions and $ \mathbb{A}^{{\text{1}}} $ -fibrations on such a surface V up to automorphisms. The latter fibrations are in one to one correspondence with $ \mathbb{C}_{{\text{ + }}} $ -actions on V considered up to a “speed change”. Non-Gizatullin surfaces are known to admit at most one $ \mathbb{A}^{1} $ -fibration VS up to an isomorphism of the base S. Moreover, an effective $ \mathbb{C}^{ * } $ -action on them, if it does exist, is unique up to conjugation and inversion t $ \mapsto $ t ?1 of $ \mathbb{C}^{ * } $ . Obviously, uniqueness of $ \mathbb{C}^{ * } $ -actions fails for affine toric surfaces. There is a further interesting family of nontoric Gizatullin surfaces, called the Danilov-Gizatullin surfaces, where there are in general several conjugacy classes of $ \mathbb{C}^{ * } $ -actions and $ \mathbb{A}^{{\text{1}}} $ -fibrations, see, e.g., [FKZ1]. In the present paper we obtain a criterion as to when $ \mathbb{A}^{{\text{1}}} $ -fibrations of Gizatullin surfaces are conjugate up to an automorphism of V and the base $ S \cong \mathbb{A}^{{\text{1}}} $ . We exhibit as well large subclasses of Gizatullin $ \mathbb{C}^{ * } $ -surfaces for which a $ \mathbb{C}^{ * } $ -action is essentially unique and for which there are at most two conjugacy classes of $ \mathbb{A}^{{\text{1}}} $ -fibrations over $ \mathbb{A}^{{\text{1}}} $ .  相似文献   

14.
15.
Let ${I\subset\mathbb{R}}$ be a nonvoid open interval and let L : I 2I be a fixed strict mean. A function M : I 2I is said to be an L-conjugate mean on I if there exist ${p,q\in\,]0,1]}$ and ${\varphi\in CM(I)}$ such that $$M(x,y):=\varphi^{-1}(p\varphi(x)+q\varphi(y)+(1-p-q) \varphi(L(x,y)))=:L_\varphi^{(p,q)}(x,y),$$ for all ${x,y\in I}$ . Here L(x, y) : = A χ(x, y) ${(x,y\in I)}$ is a fixed quasi-arithmetic mean with the fixed generating function ${\chi\in CM(I)}$ . We examine the following question: which L-conjugate means are weighted quasi-arithmetic means with weight ${r\in\, ]0,1[}$ at the same time? This question is a functional equation problem: Characterize the functions ${\varphi,\psi\in CM(I)}$ and the parameters ${p,q\in\,]0,1]}$ , ${r\in\,]0,1[}$ for which the equation $$L_\varphi^{(p,q)}(x,y)=L_\psi^{(r,1-r)}(x,y)$$ holds for all ${x,y\in I}$ .  相似文献   

16.
We show that the established necessary conditions for a GBRD ${(v,3,\lambda; \mathbb {G})}$ are sufficient (i) when ${\mathbb {G}}$ is supersolvable and (ii) when ${\mathbb {G}}$ is solvable with ${\vert \mathbb {G} \vert }$ prime to 3.  相似文献   

17.
We prove a global implicit function theorem. In particular we show that any Lipschitz map ${f : \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}}$ (with n-dim. image) can be precomposed with a bi-Lipschitz map ${\bar{g} : \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{m}}$ such that ${f \circ \bar{g}}$ will satisfy, when we restrict to a large portion of the domain ${E \subset \mathbb{R}^{n} \times \mathbb{R}^{m}}$ , that ${f \circ \bar{g}}$ is bi-Lipschitz in the first coordinate, and constant in the second coordinate. Geometrically speaking, the map ${\bar{g}}$ distorts ${\mathbb{R}^{n+m}}$ in a controlled manner so that the fibers of f are straightened out. Furthermore, our results stay valid when the target space is replaced by any metric space. A main point is that our results are quantitative: the size of the set E on which behavior is good is a significant part of the discussion. Our estimates are motivated by examples such as Kaufman’s 1979 construction of a C 1 map from [0, 1]3 onto [0, 1]2 with rank ≤ 1 everywhere. On route we prove an extension theorem which is of independent interest. We show that for any Dn, any Lipschitz function ${f : [0,1]^{n} \rightarrow \mathbb{R}^{D}}$ gives rise to a large (in an appropriate sense) subset ${E \subset [0,1]^{n}}$ such that ${f|_E}$ is bi-Lipschitz and may be extended to a bi-Lipschitz function defined on all of ${\mathbb{R}^{n}}$ . This extends results of Jones and David, from 1988. As a simple corollary, we show that n-dimensional Ahlfors–David regular spaces lying in ${\mathbb{R}^{D}}$ having big pieces of bi-Lipschitz images also have big pieces of big pieces of Lipschitz graphs in ${\mathbb{R}^{D}}$ . This was previously known only for D ≥ 2n?+?1 by a result of David and Semmes.  相似文献   

18.
Let Σ be a finite set of cardinality k > 0, let $\mathbb{A}$ be a finite or infinite set of indices, and let $\mathcal{F} \subseteq \Sigma ^\mathbb{A}$ be a subset consisting of finitely supported families. A function $f:\Sigma ^\mathbb{A} \to \Sigma$ is referred to as an $\mathbb{A}$ -quasigroup (if $\left| \mathbb{A} \right| = n$ , then an n-ary quasigroup) of order k if $f\left( {\bar y} \right) \ne f\left( {\bar z} \right)$ for any ordered families $\bar y$ and $\bar z$ that differ at exactly one position. It is proved that an $\mathbb{A}$ -quasigroup f of order 4 is reducible (representable as a superposition) or semilinear on every coset of $\mathcal{F}$ . It is shown that the quasigroups defined on Σ?, where ? are positive integers, generate Lebesgue nonmeasurable subsets of the interval [0, 1].  相似文献   

19.
This paper concerns the existence and asymptotic characterization of saddle solutions in ${\mathbb {R}^{3}}$ for semilinear elliptic equations of the form $$-\Delta u + W'(u) = 0,\quad (x, y, z) \in {\mathbb {R}^{3}} \qquad\qquad\qquad (0.1)$$ where ${W \in \mathcal{C}^{3}(\mathbb {R})}$ is a double well symmetric potential, i.e. it satisfies W(?s) =  W(s) for ${s \in \mathbb {R},W(s) > 0}$ for ${s \in (-1,1)}$ , ${W(\pm 1) = 0}$ and ${W''(\pm 1) > 0}$ . Denoted with ${\theta_{2}}$ the saddle planar solution of (0.1), we show the existence of a unique solution ${\theta_{3} \in {\mathcal{C}^{2}}(\mathbb {R}^{3})}$ which is odd with respect to each variable, symmetric with respect to the diagonal planes, verifies ${0 < \theta_{3}(x,y,z) < 1}$ for x, y, z >  0 and ${\theta_{3}(x, y, z) \to_{z \to + \infty} \theta_{2}(x, y)}$ uniformly with respect to ${(x, y) \in \mathbb {R}^{2}}$ .  相似文献   

20.
Let ${\mathcal{B}_{p,w}}$ be the Banach algebra of all bounded linear operators acting on the weighted Lebesgue space ${L^p(\mathbb{R},w)}$ , where ${p\in(1,\infty)}$ and w is a Muckenhoupt weight. We study the Banach subalgebra ${\mathfrak{U}_{p,w}}$ of ${\mathcal{B}_{p,w}}$ generated by all multiplication operators aI ( ${a\in PSO^\diamond}$ ) and all convolution operators W 0(b) ( ${b\in PSO_{p,w}^\diamond}$ ), where ${PSO^\diamond\subset L^\infty(\mathbb{R})}$ and ${PSO_{p,w}^\diamond\subset M_{p,w}}$ are algebras of piecewise slowly oscillating functions that admit piecewise slowly oscillating discontinuities at arbitrary points of ${\mathbb{R}\cup\{\infty\}}$ , and M p,w is the Banach algebra of Fourier multipliers on ${L^p(\mathbb{R},w)}$ . Under some conditions on the Muckenhoupt weight w, using results of the local study of ${\mathfrak{U}_{p,w}}$ obtained in the first part of the paper and applying the theory of Mellin pseudodifferential operators and the two idempotents theorem, we now construct a Fredholm symbol calculus for the Banach algebra ${\mathfrak{U}_{p,w}}$ and establish a Fredholm criterion for the operators ${A\in\mathfrak{U}_{p,w}}$ in terms of their Fredholm symbols. In four partial cases we obtain for ${\mathfrak{U}_{p,w}}$ more effective results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号