首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antimicrobial polynorbornenes composed of facially amphiphilic monomers have been previously reported to accurately emulate the antimicrobial activity of natural host-defense peptides (HDPs). The lethal mechanism of most HDPs involves binding to the membrane surface of bacteria leading to compromised phospholipid bilayers. In this paper, the interactions between biomimetic vesicle membranes and these cationic antimicrobial polynorbornenes are reported. Vesicle dye-leakage experiments were consistent with previous biological assays and corroborated a mode of action involving membrane disruption. Dynamic light scattering (DLS) showed that these antimicrobial polymers cause extensive aggregation of vesicles without complete bilayer disintegration as observed with surfactants that efficiently solubilize the membrane. Fluorescence microscopy on vesicles and bacterial cells also showed polymer-induced aggregation of both synthetic vesicles and bacterial cells. Isothermal titration calorimetry (ITC) afforded free energy of binding values (Delta G) and polymer to lipid binding ratios, plus revealed that the interaction is entropically favorable (Delta S>0, Delta H>0). It was observed that the strength of vesicle binding was similar between the active polymers while the binding stoichiometries were dramatically different.  相似文献   

2.
《Electroanalysis》2005,17(18):1659-1664
Evaluation of the streptavidin‐biotin binding at the surface of chitin film was carried out with voltammetry. Immobilization of streptavidin was attempted to the protonated chitin film, based on an electrostatic interaction that hardly causes any change in the protein structure. The streptavidin‐biotin binding was estimated from changes in the electrode response of biotin labeled with an electroactive compound. Although the response of daunomycin as an electroactive compound did not change at an electrode covered with streptavidin/chitin film, the response of the labeled biotin decreased. This observation shows that streptavidin is immobilized on the chitin film and the biotin binds with immobilized streptavidin. Consequently, it was clear that the chitin film is useful as a reaction field for protein‐ligand binding. Generally, a binding event between protein and its ligand in the living body occurs on the cell surface. The electrochemical evaluation of protein‐ligand binding on a natural polysaccharide like chitin membrane surface is important.  相似文献   

3.
Frank and coworkers [N. J. Cho, S. J. Cho, K. H. Cheong, J. S. Glenn and C. W. Frank, J. Am. Chem. Soc., 2007, 129, 10050] investigated what happens when lipid vesicles made of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine), which serves as a mimic for cell membranes, are exposed to the amphipathic helix peptide, PEP1, which is of the same type found in hepatitis C virus. Using atomic force field microscopy and quartz crystal microbalance measurements they presented evidence that the vesicle is transformed into a lipid bilayer. We use surface plasmon resonance (SPR) microscopy to follow this process in real time. We find an induction period (intermediate state) of approximately 10-min duration between the time of membrane binding and membrane rupture. The SPR data support the interpretation that a lipid bilayer is formed and allow us to put forward a mechanism for the vesicle-rupture event. As a side benefit, we demonstrate how to build two-dimensional lipid patterns on a gold surface using this vesicle-rupture process.  相似文献   

4.
The ultimate nature of streptavidin to bind biotin tightly is widely utilized in many solid-phase based applications to provide a universal binding surface for biotinylated molecules. However, the preparation of the streptavidin coatings by passive adsorption may heavily alter the binding properties of native streptavidin and may not result in the best possible capture surface for demanding solid-phase assays. By introducing sulphydryl groups through primary amines in the protein, we have activated and conjugated native streptavidin into larger protein polymers resulting in high local binding density when coated on polystyrene. This thiolated streptavidin formed through chemical modification has improved adsorption properties and biotin binding capability, compared to the native streptavidin. When this thiolated streptavidin is coated on polystyrene, a dense surface is formed, which provides up to 3-fold increase in the biotin binding efficiency and improves the surface stability by minimizing the desorption of the adsorbed protein from the surface during incubation. Furthermore, this high-capacity surface is resistant to harsh chemical treatments, such as denaturing conditions or mild reducing conditions. The improved adsorption properties of the thiolated streptavidin allow the coating process to be performed with shorter incubation times (15 min), still providing enhanced solid-phase properties, compared to a reference streptavidin surface.  相似文献   

5.
Recently, tethered bilayer lipid membranes (tBLMs) have shown high potential as biomimetic systems due to their high stability and electrical properties, and have been used in applications ranging from membrane protein incorporation to biosensors. However, the kinetics of their formation remains largely uninvestigated. By using quartz crystal microbalance with impedance analysis (QCM-Z), we were able to monitor both the kinetics and viscoelastic properties of tether adsorption and vesicle fusion. Formation of the tether monolayer was shown to follow pseudo-first-order Langmuir kinetics with association and dissociation rate constants of 21.7 M-1 s(-1) and 7.43 x 10-6 s(-1), respectively. Moreover, the QCM-Z results indicate a rigid layer at the height of deposition, which then undergoes swelling as indicated by AFM. The deposition of vesicles to the tether layer also followed pseudo-first-order Langmuir kinetics with observed rate constants of 5.58 x 10(-2) and 2.41 x 10-2 s(-1) in water and buffer, respectively. Differential analysis of the QCM-Z data indicated deposition to be the fast kinetic step, with the rate-limiting steps being water release and fusion. Atomic force microscopy pictures taken complement the QCM-Z data, showing the major stages of tether adsorption and vesicle fusion, while providing a road map to successful tBLM formation.  相似文献   

6.
Lipid nanotube formation from streptavidin-membrane binding   总被引:1,自引:0,他引:1  
A novel transformation of giant lipid vesicles to produce nanotubular structures was observed upon the binding of streptavidin to biotinylated membranes. Unlike membrane budding and tubulation processes caused by proteins involved with endocytosis and vesicle fusion, streptavidin is known to crystallize at near the isoelectric point (pI 5 to 6) into planar sheets against biotinylated films. We have found, however, that at neutral pH membranes of low bending rigidity (<10kT), such as 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), spontaneously produce tubular structures with widths ranging from micrometers to below the diffraction limit (<250 nm) and lengths spanning up to hundreds of micrometers. The nanotubes were typically held taut between surface-bound vesicles suggesting high membrane tension, yet the lipid nanotubes exhibited a fluidic nature that enabled the transport of entrained vesicles. Confocal microscopy confirmed the uniform coating of streptavidin over the vesicles and nanotubes. Giant vesicles composed of lipid membranes of higher bending energy exhibited only aggregation in the presence of streptavidin. Routes toward the development of these highly curved membrane structures are discussed in terms of general protein-membrane interactions.  相似文献   

7.
Surface enhanced infrared absorption spectroscopy (SEIRAS) has been employed to monitor the orientated assembly of a strep-tagged membrane protein on the gold surface via a streptavidin/biotin interlayer. The high surface sensitivity of SEIRAS allows for tracking the individual assembling steps on the molecular level. The sequence of surface modification steps comprises: (i) cross-linking of biotin to the self-assembled monolayer of cysteamine along the gold surface; (ii) adsorption of streptavidin to and desorption from the biotin layer; and (iii) adsorption of the strep-tagged membrane protein ecgltP (glutamate transporter of E. coli) on the streptavidin/biotin layer. The analysis of the SEIRA spectra reveals that the biotin layer undergoes a phase transition from an isotropic orientation to a densely packed layer during coupling to the cysteamine monolayer. Formation of the densely packed layer weakens the interaction between streptavidin and the biotin layer but yields a binding specificity of 80%. The specificity of strep-tagged ecgltP to the streptavidin layer is with 60% only modest. Nevertheless, the streptavidin/biotin interlayer reveals a higher regeneration propensity than the His-tag/Ni-NTA interlayer.  相似文献   

8.
Aptamer-based biosensors for the detection of HIV-1 Tat protein   总被引:7,自引:0,他引:7  
Two biosensors have been constructed using an RNA aptamer as biorecognition element. The aptamer, specific for HIV-1 Tat protein, has been immobilised on the gold surface of piezoelectric quartz crystals or surface plasmon resonance (SPR) chips to develop a quartz crystal microbalance (QCM)-based and an SPR-based biosensor, respectively. Both the biosensors were modified with the same immobilisation chemistry based on the binding of a biotinylated aptamer on a layer of streptavidin. The binding between the immobilised aptamer and its specific protein has been evaluated with the two biosensors in terms of sensitivity, reproducibility and selectivity. A protein very similar to Tat, Rev protein, has been used as negative control. The two biosensors both were very reproducible in the immobilisation and the binding steps. The selectivity was high in both cases.  相似文献   

9.
The development of model systems that mimic biological interactions and allow the control of both receptor and ligand densities, is essential for a better understanding of biomolecular processes, such as the recruitment of receptors at interfaces, at the molecular level. Here we report a model system based on supported lipid bilayers (SLBs) for the investigation of the clustering of receptors at their interface. Biotinylated SLBs, used as cell membrane mimics, were functionalized with streptavidin (SAv), used here as receptor. Subsequently, biotinylated small (SUVs) and giant (GUVs) unilamellar vesicles were bound to the SAv-functionalized SLBs by multivalent interactions and found to induce the recruitment of both SAv on the SLB surface and the biotin moieties in the vesicles. The recruitment of receptors was investigated with quartz crystal microbalance with dissipation monitoring (QCM-D), which allowed the identification of the biotin and SAv densities necessary to obtain receptor recruitment. At approx. 0.6% of biotin in the vesicles, a transition between dense and low vesicle packing was observed, which coincided with the transitions between recruitment in the vesicles vs. recruitment in the SLB and between full and partial use of the biotin moieties in the vesicle. Direct optical visualization of the clustering at the interface of individual GUVs with the SLB platform was achieved with fluorescence microscopy, showing recruitment of SAv at the contact area as well as the deformation of the vesicles upon binding. Different vesicle binding regimes were observed for lower and higher biotin densities in the vesicles and at the SLBs. A more quantitative analysis of the molecular parameters implied in the interaction, indicated that approx. 10% of the vesicle area constitutes the contact area. Moreover, the SUV binding and recruitment appeared to be fast on the analysis time scale, whereas the binding of GUVs is slower due to the larger SLB area over which SAv recruitment needs to occur. The mechanisms revealed in this study may provide insight in biological processes in which recruitment occurs.

The development of model systems that mimic biological interactions and allow the control of both receptor and ligand densities, is essential for a molecular understanding of biomolecular processes, such as the recruitment of receptors at interfaces.  相似文献   

10.
We investigate the kinetics of spreading and adhesion between polymer vesicles decorated with avidin and biotin, held in micropipettes to maintain fixed tension and suppress membrane bending fluctuations. In this study, the density of avidin (actually Neutravidin) and biotin was varied, but was always sufficiently high so that lateral diffusion in the membrane was unimportant to the adhesive mechanism or rate. For a stunning result, we report a concentration-dependent distinction between adhesion and spreading: At low surface densities of avidin and biotin, irreversible vesicle adhesion is strong enough to break the membrane when vesicle separation is attempted, yet there is no spreading or "wetting". By this we mean that there is no development of an adhesion plaque beyond the initial radius of contact and there is no development of a meaningful contact angle. Conversely, at 30% functionalization and greater, membrane adhesion is manifest through a spreading process in which the vesicle held at lower tension partially engulfs the second vesicle, and the adhesion plaque grows, as does the contact angle. Generally, when spreading occurs, it starts abruptly, following a latent contact period whose duration decreases with increasing membrane functionality. A nucleation-type rate law describes the latency period, determined by competition between bending and sticking energy. The significance of this result is that, not only are membrane mechanics important to the development of adhesion in membranes of nanometer-scale thickness, mechanics can dominate and even mask adhesive features such as contact angle. This renders contact angle analyses inappropriate for some systems. The results also suggest that there exist large regions of parameter space where adhesive polymeric vesicles will behave qualitatively differently from their phospholipid counterparts. This motivates different strategies to design polymeric vesicles for applications such as targeted drug delivery and biomimetic scavengers.  相似文献   

11.
Anodic aluminum oxide (AAO) substrates with aligned, cylindrical, non-intersecting pores with diameters of 75 nm and depths of 3.5 or 10 μm were functionalized with lipid monolayers harboring different receptor lipids. AAO was first functionalized with dodecyl-trichlorosilane, followed by fusion of small unilamellar vesicles (SUVs) forming a lipid monolayer. The SUVs' lipid composition was transferred onto the AAO surface, allowing us to control the surface receptor density. Owing to the optical transparency of the AAO, the overall vesicle spreading process and subsequent protein binding to the receptor-doped lipid monolayers could be investigated in situ by optical waveguide spectroscopy (OWS). SUV spreading occurred at the pore-rim interface, followed by lateral diffusion of lipids within the pore-interior surface until homogeneous coverage was achieved with a lipid monolayer. The functionality of the system was demonstrated through streptavidin binding onto a biotin-DOPE containing POPC membrane, showing maximum protein coverage at 10 mol% of biotin-DOPE. The system enabled us to monitor in real-time the selective extraction of two histidine-tagged proteins, PIGEA14 (14 kDa) and ezrin (70 kDa), directly from cell lysate solutions using a DOGS-NTA(Ni)/DOPC (1:9) membrane. The purification process including protein binding and elution was monitored by OWS and confirmed by SDS-PAGE.  相似文献   

12.
Supported lipid platforms are versatile cell membrane mimics whose structural properties can be tailored to suit the application of interest. By identifying parameters that control the self-assembly of these platforms, there is potential to develop advanced biomimetic systems that overcome the surface specificity of lipid vesicle interactions under physiological conditions. In this work, we investigated the adsorption kinetics of vesicles onto silicon and titanium oxides as a function of pH. On each substrate, a planar bilayer and a layer of intact vesicles could be self-assembled in a pH-dependent manner, demonstrating the role of surface charge density in the self-assembly process. Under acidic pH conditions where both zwitterionic lipid vesicles and the oxide films possess near-neutral electric surface charges, vesicle rupture could occur, demonstrating that the process is driven by nonelectrostatic interactions. However, we observed that the initial rupturing process is insufficient for propagating bilayer formation. The role of electrostatic interactions for propagating bilayer formation differs for the two substrates; electrostatic attraction between vesicles and the substrate is necessary for complete bilayer formation on titanium oxide but is not necessary on silicon oxide. Conversely, in the high pH regime, repulsive electrostatic interactions can result in the irreversible adsorption of intact vesicles on silicon oxide and even a reversibly adsorbed vesicle layer on titanium oxide. Together, the results show that pH is an effective tool to modulate vesicle-substrate interactions in order to create various self-assembled lipid platforms on hydrophilic substrates.  相似文献   

13.
Surface plasmon resonance (SPR) spectroscopy is employed for the study of biotinylated DNA assembly on streptavidin modified gold surfaces for target DNA hybridization. Two immobilization strategies are involved for constructing streptavidin films, namely, (1) physical adsorption on biotin-containing thiol treated surfaces through biotin-streptavidin links and (2) covalent attachment to 11-mercaptoundecanoic acid (MUA) treated surfaces through amine coupling. To understand the structural properties of the streptavidin films, a quartz crystal microbalance with energy dissipation monitoring (QCM-D) is used to monitor the streptavidin immobilization procedures. The simultaneously measured frequency (Deltaf) and dissipation factor (DeltaD) changes, together with the SPR angle shifts (Deltatheta), suggest that the streptavidin film assembled on the biotin-containing surface is highly rigid with a well-ordered structure while the streptavidin film formed through amine coupling is highly dissipative and less structured. The subsequent biotinylated DNA (biotin-DNA) assembly and target hybridization results show that the streptavidin film structure has distinct effects on the biotin-DNA binding amount. On the streptavidin matrix, not only the probe DNA density but also the strand orientation mediated by the streptavidin films has distinct effects on hybridization efficiency. Particularly, the molecularly ordered streptavidin films formed on the biotin-containing surfaces ensure a well-ordered DNA assembly, which in turn allows for a higher efficiency in target DNA capture and for a higher sensitivity in the hybridization analysis when compared to the biotin-DNA assembled on the less structured streptavidin films formed through amine coupling.  相似文献   

14.
The aim of this work was to create patterned surfaces for localized and specific biochemical recognition. For this purpose, we have developed a protocol for orthogonal and material-selective surface modifications of microfabricated patterned surfaces composed of SiO(2) areas (100 μm diameter) surrounded by Au. The SiO(2) spots were chemically modified by a sequence of reactions (silanization using an amine-terminated silane (APTES), followed by amine coupling of a biotin analogue and biospecific recognition) to achieve efficient immobilization of streptavidin in a functional form. The surrounding Au was rendered inert to protein adsorption by modification by HS(CH(2))(10)CONH(CH(2))(2)(OCH(2)CH(2))(7)OH (thiol-OEG). The surface modification protocol was developed by testing separately homogeneous SiO(2) and Au surfaces, to obtain the two following results: (i) SiO(2) surfaces which allowed the grafting of streptavidin, and subsequent immobilization of biotinylated antibodies, and (ii) Au surfaces showing almost no affinity for the same streptavidin and antibody solutions. The surface interactions were monitored by quartz crystal microbalance with dissipation monitoring (QCM-D), and chemical analyses were performed by polarization modulation-reflexion absorption infrared spectroscopy (PM-RAIRS) and X-ray photoelectron spectroscopy (XPS) to assess the validity of the initial orthogonal assembly of APTES and thiol-OEG. Eventually, microscopy imaging of the modified Au/SiO(2) patterned substrates validated the specific binding of streptavidin on the SiO(2)/APTES areas, as well as the subsequent binding of biotinylated anti-rIgG and further detection of fluorescent rIgG on the functionalized SiO(2) areas. These results demonstrate a successful protocol for the preparation of patterned biofunctional surfaces, based on microfabricated Au/SiO(2) templates and supported by careful surface analysis. The strong immobilization of the biomolecules resulting from the described protocol is advantageous in particular for micropatterned substrates for cell-surface interactions.  相似文献   

15.
In an effort toward determining the feasibility of single molecule analysis, we describe a case whereby the binding of one biotinylated DNA to one streptavidin molecule via electrostatic interactions was controlled by altering in pH 4.0-9.0 and 0.16 of the ion strength. The quantitative analysis of immobilized probe ssDNA was realized in real-time via a quartz crystal microbalance (QCM) and electrochemical (EC) measurement in the range 100 pM to 50 μM of probe oligonucleotide concentration. The variation amount of biotinylated ssDNA immobilized on the streptavidin-modified surface at pH 7.5 was about 0.16 pmol, giving a ratio of streptavidin to biotinylated ssDNA of about 1:1.1. On the other hand, at pH 4.9, it was immobilized about 0.29 pmol. From the shape of the Langmuir plot and QCM, the immobilization efficiency of biotinylated DNA via streptavidin at pH 4.9 was approximately twofold that at pH 7.5. In view points of the reaction velocity, it was increased with decreasing buffer solution pH, indicating a strong interaction of negatively charged probe DNA with the positively charged streptavidin. And also the EC response value of ΔI/Istreptavidin for the immobilized biotinylated ssDNA in pH 4.9 was about 49%, while the corresponding value for the pH 7.5 was approximately 34%. As DNA molecules possess negative charges, electrostatic repulsion occurred between streptavidin and biotinylated ssDNA at pH 7.5. At pH 4.9, the attraction between the biotinylated ssDNA and streptavidin resulted in increased adsorption which has an isoelectric point of about 5.9. It was deduced that the binding of biotinylated ssDNA to one or two of the four binding sites of streptavidin can be controlled by adjusting the pH-controlled electrostatic interaction.  相似文献   

16.
The detection of covalent and noncovalent binding events between molecules and biomembranes is a fundamental goal of contemporary biochemistry and analytical chemistry. Currently, such studies are performed routinely using fluorescence methods, surface-plasmon resonance spectroscopy, and electrochemical methods. However, there is still a need for novel sensitive miniaturizable detection methods where the sample does not have to be transferred to the sensor, but the sensor can be brought into contact with the sample studied. We present a novel approach for detection and quantification of processes occurring on the surface of a lipid bilayer membrane, by monitoring the current change through the n-type GaAs-based molecularly controlled semiconductor resistor (MOCSER), on which the membrane is adsorbed. Since GaAs is susceptible to etching in an aqueous environment, a protective thin film of methoxysilane was deposited on the device. The system was found to be sensitive enough to allow monitoring changes in pH and in the concentration of amino acids in aqueous solution on top of the membrane. When biotinylated lipids were incorporated into the membrane, it was possible to monitor the binding of streptavidin or avidin. The device modified with biotin-streptavidin complex was capable of detecting the binding of streptavidin antibodies to immobilized streptavidin with high sensitivity and selectivity. The response depends on the charge on the analyte. These results open the way to facile electrical detection of protein-membrane interactions.  相似文献   

17.
There is a great need for development of independent methods to study the structure and function of membrane-associated proteins and peptides. Polarized light spectroscopy (linear dichroism, LD) using shear-aligned lipid vesicles as model membranes has emerged as a promising tool for the characterization of the binding geometry of membrane-bound biomolecules. Here we explore the potential of retinoic acid, retinol, and retinal to function as probes of the macroscopic alignment of shear-deformed 100 nm liposomes. The retinoids display negative LD, proving their preferred alignment perpendicular to the membrane surface. The magnitude of the LD indicates the order retinoic acid > retinol > retinal regarding the degree of orientation in all tested lipid vesicle types. It is concluded that mainly nonspecific electrostatic interactions govern the apparent orientation of the retinoids within the bilayer. We propose a simple model for how the effective orientation may be related to the polarity of the end groups of the retinoid probes, their insertion depths, and their angular distribution of configurations around the membrane normal. Further, we provide evidence that the retinoids can sense subtle structural differences due to variations in membrane composition and we explore the pH sensitivity of retinoic acid, which manifests in variations in absorption maximum wavelength in membranes of varying surface charge. Based on LD measurements on cholesterol-containing liposomes, the influence of membrane constituents on bending rigidity and vesicle deformation is considered in relation to the macroscopic alignment, as well as to lipid chain order on the microscopic scale.  相似文献   

18.
We report surface plasmon imaging of streptavidin binding to photopatterned biotinylated alkanethiol self-assembled monolayers (SAMs) on gold. Micrometer-scale patterns of a mixed biotin- and hydroxyl-terminated monolayer were formed in an inert, hydroxy-terminated alkanethiol monolayer using a UV-photopatterning procedure. Using surface plasmon microscopy, contrast is readily observed between the mixed biotin- and hydroxy-terminated SAM region after specific binding of streptavidin has occurred and the pure hydroxy-terminated region where nonspecific binding of streptavidin is negligible. Surface plasmon microscopy was also able to monitor in situ and in real time the binding of streptavidin to the patterned SAMs. The ability of surface plasmon microscopy to detect and spatially resolve 2-dimensional monolayer binding events may prove useful in diagnostic applications involving the parallel interrogation at surface biomolecular arrays.  相似文献   

19.
Membrane proteins are some of the most sophisticated molecules found in nature. These molecules have extraordinary recognition properties; hence, they represent a vast source of specialized materials with potential uses in sensing and screening applications. However, the strict requirement of the native lipid environment to preserve their structure and functionality presents an impediment in building biofunctional materials from these molecules. In general, the purification protocols remove the native lipid support structures found in the cellular environment that stabilize the membrane proteins. Furthermore, the membrane protein structure is often highly complex, typified by large, multisubunit complexes that not only span the lipid bilayer but also contain large (>2 nm) cytoplasmic and extracellular domains that protrude from the membrane. The present study is focused on using a biomimetic approach to build a stable, fluid microenvironment to be used to incorporate larger membrane proteins of interest into a tether-supported lipid bilayer membrane adequately spaced above a substrate passivated to liposome fusion and nonspecific adsorption. Our aim is to reintroduce the supporting structures of the native cell membrane using self-assembled supramolecular complexes constructed on microspheres in an artificial cytoskeleton motif. Central to our architecture is to utilize bacteriorhodopsin (bR), a transmembrane protein, as a biomembrane anchoring molecule to be tethered to surfaces of interest as a sparse structural element in the design. Compared to a typical lipid tether, which inserts into one leaflet of the lipid bilayer, bR anchoring provides an over 8-fold greater hydrophobic surface area in contact with the bilayer. In the work presented here, the silica microsphere surface was biofunctionalized with streptavidin to make it a suitable supporting interface. This was achieved by self-assembly of (p-aminophenyl)trimethoxysilane on the silica surface followed by subsequent conjugation of biotin-PEG3400 (PEG = poly(ethylene glycol) and PEG2000 for further passivation and the binding of streptavidin. We have conjugated bR with biotin-PEG3400 through amine-based coupling to use it as a tether. The biotin-PEG-bR conjugate was further labeled with Texas Red to facilitate localization via fluorescence imaging. Confocal microscopy was utilized to analyze the microsphere surface at different stages of surface modification by employing fluorescent staining techniques. Sparely tethered supported lipid bilayer membranes were constructed successfully on streptavidin-functionalized silica particles (5 mum) using a detergent-based method in which tethered bR nucleates self-assembly of the bilayer membrane. The fluidity of the supported membranes was analyzed using fluorescence recovery after photobleaching in confocal imaging detection mode. The phospholipid diffusion coefficients obtained from these studies indicated that nativelike fluidity was achieved in the tether-supported membranes, thus providing a prospective microenvironment for insertion of membrane proteins of interest.  相似文献   

20.
The dissipational quartz crystal microbalance (D-QCM) technology was applied to monitor the adsorption of vesicles to membrane-bound annexin A1 by simultaneously reading out the shifts in resonance frequency and dissipation. Solid-supported membranes (SSMs) composed of a chemisorbed octanethiol monolayer and a physisorbed 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine monolayer were immobilized on the gold electrode of a 5 MHz quartz plate. Adsorption and desorption of annexin A1 to the SSM was followed by means of the QCM technique. After nonbound annexin A1 was removed from solution, the second membrane binding was monitored by the D-QCM technique, which allowed distinguishing between adsorbed and ruptured vesicles. The results show that vesicles stay always intact independent of the amount of bound annexin and the vesicle and buffer composition. It was shown that the vesicle adsorption process to membrane-bound annexin A1 is fully irreversible and is mediated by two-dimensional annexin clusters. For N-terminally truncated annexin A1, a decrease in the amount of bound vesicles was observed, which might be the result of fewer binding sites presented by the annexin A1 core. Supported by computer simulations, the results demonstrate that the vesicle adsorption process is electrostatically driven, but compared to those of sole electrostatic binding, the rate constants of adsorption are 1-2 orders of magnitude smaller, indicating the presence of a potential barrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号