首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of mixed-valence nickel-iron dithiolates is described. Oxidation of (diphosphine)Ni(dithiolate)Fe(CO)(3) complexes 1, 2, and 3 with ferrocenium salts affords the corresponding tricarbonyl cations [(dppe)Ni(pdt)Fe(CO)(3)](+) ([1](+)), [(dppe)Ni(edt)Fe(CO)(3)](+) ([2](+)) and [(dcpe)Ni(pdt)Fe(CO)(3)](+) ([3](+)), respectively, where dppe = Ph(2)PCH(2)CH(2)PPh(2), dcpe = Cy(2)PCH(2)CH(2)PCy(2), (Cy = cyclohexyl), pdtH(2) = HSCH(2)CH(2)CH(2)SH, and edtH(2) = HSCH(2)CH(2)SH. The cation [2](+) proved unstable, but the propanedithiolates are robust. IR and EPR spectroscopic measurements indicate that these species exist as C(s)-symmetric species. Crystallographic characterization of [3]BF(4) shows that Ni is square planar. Interaction of [1]BF(4) with P-donor ligands (L) afforded a series of substituted derivatives of type [(dppe)Ni(pdt)Fe(CO)(2)L]BF(4) for L = P(OPh)(3) ([4a]BF(4)), P(p-C(6)H(4)Cl)(3) ([4b]BF(4)), PPh(2)(2-py) ([4c]BF(4)), PPh(2)(OEt) ([4d]BF(4)), PPh(3) ([4e]BF(4)), PPh(2)(o-C(6)H(4)OMe) ([4f]BF(4)), PPh(2)(o-C(6)H(4)OCH(2)OMe) ([4g]BF(4)), P(p-tol)(3) ([4h]BF(4)), P(p-C(6)H(4)OMe)(3) ([4i]BF(4)), and PMePh(2) ([4j]BF(4)). EPR analysis indicates that ethanedithiolate [2](+) exists as a single species at 110 K, whereas the propanedithiolate cations exist as a mixture of two conformers, which are proposed to be related through a flip of the chelate ring. M?ssbauer spectra of 1 and oxidized S = 1/2 [4e]BF(4) are both consistent with a low-spin Fe(I) state. The hyperfine coupling tensor of [4e]BF(4) has a small isotropic component and significant anisotropy. DFT calculations using the BP86, B3LYP, and PBE0 exchange-correlation functionals agree with the structural and spectroscopic data, suggesting that the SOMOs in complexes of the present type are localized in an Fe(I)-centered d(z(2)) orbital. The DFT calculations allow an assignment of oxidation states of the metals and rationalization of the conformers detected by EPR spectroscopy. Treatment of [1](+) with CN(-) and compact basic phosphines results in complex reactions. With dppe, [1](+) undergoes quasi-disproportionation to give 1 and the diamagnetic complex [(dppe)Ni(pdt)Fe(CO)(2)(dppe)](2+) ([5](2+)), which features square-planar Ni linked to an octahedral Fe center.  相似文献   

2.
The complex [Rh(kappa(3)-N,N,N-pybox)(CO)][PF(6)] (1) has been prepared by reaction of the precursor [Rh(mu-Cl)(eta(2)-C(2)H(4))(2)](2), 2,6-bis[4'(S)-isopropyloxazolin-2'-yl]pyridine (pybox), CO, and NaPF(6). Complex 1 reacts with monodentate phosphines to give the complexes [Rh(kappa(1)-N-pybox)(CO)(PR(3))(2)][PF(6)] (R(3) = MePh(2) (2), Me(2)Ph (3), (C(3)H(5))Ph(2) (4)), which show a previously unseen monodentate coordination of pybox. Complex 1 undergoes oxidative addition reactions with iodine and CH(3)I leading to the complexes [RhI(R)(kappa(3)-N,N,N-pybox)(CO)][PF(6)] (R = I (5); R = CH(3) (6)). Furthermore, a new allenyl Rh(III)-pybox complex of formula [Rh(CH=C=CH(2))Cl(2)(kappa(3)-N,N,N-pybox)] (7) has been synthesized by a one-pot reaction from [Rh(mu-Cl)(eta(2)-C(2)H(4))(2)](2), pybox, and an equimolar amount of propargyl chloride.  相似文献   

3.
The non-heteroatom-substituted manganese alkynyl carbene complexes (eta5-MeC5H4)(CO)2Mn=C(R)C[triple bond]CR'(3; 3a: R = R'= Ph, 3b: R = Ph, R'= Tol, 3c: R = Tol, R'= Ph) have been synthesised in high yields upon treatment of the corresponding carbyne complexes [eta5-MeC5H4)(CO)2Mn[triple bond]CR][BPh4]([2][BPh4]) with the appropriate alkynyllithium reagents LiC[triple bond]CR' (R'= Ph, Tol). The use of tetraphenylborate as counter anion associated with the cationic carbyne complexes has been decisive. The X-ray structures of (eta5-MeC5H4)(CO)2Mn=C(Tol)C[triple bond]CPh (3c), and its precursor [(eta5-MeC5H4)(CO)2Mn=CTol][BPh4]([2b](BPh4]) are reported. The reactivity of complexes toward phosphines has been investigated. In the presence of PPh3, complexes act as a Michael acceptor to afford the zwitterionic sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)=C=C(PPh3)R' (5) resulting from nucleophilic attack by the phosphine on the remote alkynyl carbon atom. Complexes 5 exhibit a dynamic process in solution, which has been rationalized in terms of a fast [NMR time-scale] rotation of the allene substituents around the allene axis; metrical features within the X-ray structure of (eta5-MeC5H4)(CO)2MnC(Ph)=C=C(PPh3)Tol (5b) support the proposal. In the presence of PMe3, complexes undergo a nucleophilic attack on the carbene carbon atom to give zwitterionic sigma-propargylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)(PMe3)C[triple bond]CR' (6). Complexes 6 readily isomerise in solution to give the sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R')=C=C(PMe3)R (7) through a 1,3 shift of the [(eta5-MeC5H4)(CO)2Mn] fragment. The nucleophilic attack of PPh2Me on 3 is not selective and leads to a mixture of the sigma-propargylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)(PPh(2)Me)C[triple bond]CR' (9) and the sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)=C=C(PPh(2)Me)R' (10). Like complexes 6, complexes 9 readily isomerize to give the sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R')=C=C(PPh2Me)R'). Upon gentle heating, complexes 7, and mixtures of 10 and 10' cyclise to give the sigma-dihydrophospholium complexes (eta5-MeC5H4)(CO)2MnC=C(R')PMe2CH2CH(R)(8), and mixtures of complexes (eta5-MeC5H4)(CO)2MnC=C(Ph)PPh2CH2CH(Tol)(11) and (eta5-MeC5H4)(CO)2MnC=C(Tol)PMe2CH2CH(Ph)(11'), respectively. The reactions of complexes 3 with secondary phosphines HPR(1)(2)(R1= Ph, Cy) give a mixture of the eta2-allene complexes (eta5-MeC5H4)(CO)2Mn[eta2-{R(1)(2)PC(R)=C=C(R')H}](12), and the regioisomeric eta4-vinylketene complexes [eta5-MeC5H4)(CO)Mn[eta4-{R(1)(2)PC(R)=CHC(R')=C=O}](13) and (eta5-MeC5H4)(CO)Mn[eta4-{R(1)(2)PC(R')=CHC(R)=C=O}](13'). The solid-state structure of (eta5-MeC5H4)(CO)2Mn[eta2-{Ph2PC(Ph)=C=C(Tol)H}](12b) and (eta5-MeC5H4)(CO)Mn[eta4-{Cy2PC(Ph)=CHC(Ph)=C=O}](13d) are reported. Finally, a mechanism that may account for the formation of the species 12, 13, and 13' is proposed.  相似文献   

4.
A series of [Rh(6)(CO)(16)] substituted derivatives containing Ph(2)P(alkenyl) ligands has been synthesized starting from the [Rh(6)(CO)(16-x)(NCMe)(x)](x= 1, 2) clusters and Ph(2)P((CH(2))(n)CH=CH(2))(n= 2, 3) phosphines. It was shown that the terminal alkenyl substituents in these phosphines easily undergo isomerization in the coordination sphere of the hexarhodium complexes to give the allyl -CH(2)CH=C(H)R (R = Me and Et) fragments coordinated through the double bond of the rearranged organic moieties. The solid-state structure of two clusters, [Rh(6)(CO)(14)(mu2,kappa3-Ph(2)PCH(2)CH=C(H)CH(3))](4) and [Rh(6)(CO)(14)(mu2,kappa3-Ph(2)PCH(2)CH=C(H)CH(2)CH(3))](8), was established by X-ray crystallography. Solution structures of the products obtained were also characterized by IR and NMR ((1)H, (31)P, (1)H-(1)H COSY and (1)H-(1)H NOE) spectroscopy. It was shown that 4 and 8 exist in solution as mixtures of three isomers (A, B and C), which differ in the conformation of the coordinated allyl fragment. A similar (two species, A and B) equilibrium was found to occur in the solution of the [Rh(6)(CO)(14)(mu2,kappa3-Ph(2)PCH(2)CH=CH(2))](2) cluster. The dynamic behaviour of 2, 4 and 8[Rh(6)(CO)(14)(mu2,kappa3-Ph(2)PCH=CH(2))] has been studied using VT (31)P and (1)H-(1)H NOESY NMR spectroscopy, rate constants and activation parameters of the (A<-->B) isomerization processes were determined. It was shown that the most probable mechanism of this isomerization involves a dissociative [Rh6(CO)(14)(kappa1-Ph(2)P(alkenyl))] intermediate and re-coordination of the double bond to the same metal atom where the process started from. The conversion of the A and B species in and into the third isomer very likely occurs through the transfer of an allyl hydrogen atom onto the rhodium skeleton to give eventually cis conformation of the coordinated allyl fragment.  相似文献   

5.
Seward C  Chan J  Song D  Wang S 《Inorganic chemistry》2003,42(4):1112-1120
The reaction of AgX, where X = trifluoroacetate (CF(3)CO(2)(-), tfa), nitrate (NO(3)(-)), trifluoromethanesulfonate (triflate, CF(3)SO(3)(-), OTf), hexafluorophosphate (PF(6)(-)), or perchlorate (ClO(4)(-)), with 2,2',3' '-tripyridylamine (tpa) yields five novel silver(I) complexes, which have been structurally characterized. The five complexes have the same 1:1 stoichiometry of Ag/tpa but exhibit different modes of coordination, depending upon the counterion present in the compound. Compound 1, [Ag(tpa)(tfa)](n)(), forms a 1D coordination polymer of [Ag(tpa)(tfa)](2) dimer units linked through bridging tfa counterions. Compound 2, [Ag(tpa)(CH(3)CN)(NO(3))](n), forms a zigzag chain 1D coordination polymer exclusively through Ag-N bonds. In compounds 1 and 2, each tpa ligand is bound to two Ag(I) ions via a 2-py and a 3-py group. Compound 3, [Ag(tpa)(OTf)](n), forms a ribbonlike 1D coordination polymer, in which each tpa ligand binds to three different silver centers via all three pyridyl groups, and the counterion remains coordinated to the Ag(I) center. Compounds 4, [Ag(tpa)(CH(3)CN)](n)(PF(6))(n), and 5, [Ag(tpa)(CH(3)CN)](n)() (ClO(4))(n), display ribbonlike structures resembling that of 3, except that the counterions are not coordinated. All complexes are luminescent in acetonitrile solution, with emission maxima in the near-UV region (lambda(max) = 366, 368, 367, 367, and 368 nm for 1-5, respectively). At 77 K, the emission maxima are red-shifted to lambda(max) = 452, 453, 450, 450, and 454 nm for 1-5, respectively.  相似文献   

6.
The tetrahydroborate OsH(η(2)-H(2)BH(2))(CO)(P(i)Pr(3))(2) (1) reacts with aniline and p-toluidine to give the aminoboryl derivatives [chemical structure: see text] (R = H (2), CH(3) (3)) and four H(2) molecules. Treatment of 2 and 3 with phenylacetylene gives Os{B(NHC(6)H(4)R)(2)}(C≡CPh)(CO)(P(i)Pr(3))(2) (R = H (4), CH(3) (5)), which react with HBF(4) to afford the amino(fluoro)boryl species Os{BF(NHC(6)H(4)R)}(C≡CPh)(CO)(P(i)Pr(3))(2) (R = H (6), CH(3) (7)). In contrast to HBF(4), the addition of acetic acid to 4 and 5 induces the release of phenylacetylene and the formation of the six-coordinate derivatives Os{B(NHC(6)H(4)R)(2)}(κ(2)-O(2)CCH(3))(CO)(P(i)Pr(3))(2) (R = H (8), CH(3) (9)). The coordination number six for 4 and 5 can be also achieved by addition of CO. Under this gas Os{B(NHC(6)H(4)R)(2)}(C≡CPh)(CO)(2)(P(i)Pr(3))(2) (R = H (10), CH(3) (11)) are formed. In toluene, these alkynyl-aminoboryl compounds evolve into the aminoborylvinylidenes Os{═C═C(Ph)B(NHC(6)H(4)R)(2)}(CO)(2)(P(i)Pr(3))(2) (R = H (12), CH(3) (13)) via a unimolecular 1,3-boryl migration from the metal to the C(β) atom of the alkynyl ligand. Similarly to 4 and 5, complexes 6 and 7 coordinate CO to give Os{BF(NHC(6)H(4)R)}(C≡CPh)(CO)(2)(P(i)Pr(3))(2) (R = H (15), CH(3) (16)), which evolve to Os{═C═C(Ph)BF(NHC(6)H(4)R)}(CO)(2)(P(i)Pr(3))(2) (R = H (17), CH(3) (18)).  相似文献   

7.
The coordination chemistry of the potentially semilabile tridentate ligand 2-pyridylbis(diphenylphosphino)methane (NPP) has been investigated. Bidentate (N, P) coordination occurs in CoCl(2)(NPP) (1) and [CdX(mu-X)(NPP)](2) (X = Cl (2); OAc (3)), prepared from the corresponding metal salts, in fac-Re(CO)(3)Br(NPP) (4) and in Fe(CO)(2)(MA)(NPP) (6). The last is one of three products from the reaction of Fe(CO)(4)(MA) (MA = maleic anhydride) with NPP, the other two being Fe(CO)(3)(NPP) (7; P, P coordinated) and the unusual cyclic ylid Ph2PC(2-C5H4N)PPh2C(CH2CO2H)C(=O)(5). The ligand shows tridentate coordination in Cr(CO)(3)(NPP) (9), RuCl(2)(PPh(3))(NPP) (10), and possibly in PtCl(2)(NPP) (8). Carbon monoxide displaces one phosphorus arm of the ligand in 10. Anhydrous NiCl(2) and NPP react in the presence of methanol to give NiCl(2)(P(OMe)Ph(2))(Ph(2)PCH(2)py) (12) in which the NPP ligand has been cleaved. This in turn reacts with O(2) to form trans-NiCl(2)(Ph(2)P(O)CH(2)py)(2) (13). The methine proton of NPP is transferred to the metal on reaction with Pt(C(2)H(4))(PPh(3))(2) and [Ir(COD)(NPP)]BF(4) to form the hydride complexes Pt(H)(PPh(3))(NPP-H) (14) and [Ir(H)(NPP)(NPP-H)]BF(4) (15). In 15 the intact NPP ligand is tridentate. The structures of 1 - 7 and 12 - 15 have been determined.  相似文献   

8.
Treatment in acetonitrile at -30 C of the hydride-alkenylcarbyne complex [OsH([triple bond]CCH=CPh2)(CH3CN)2(P(i)Pr3)2][BF4]2 (1) with (t)BuOK produces the selective deprotonation of the alkenyl substituent of the carbyne and the formation of the bis-solvento hydride-allenylidene derivative [OsH(=C=C=CPh2)(CH3CN)2(P(i)Pr3)2]BF4 (2), which under carbon monoxide atmosphere is converted into [Os(CH=C=CPh2)(CO)(CH3CN)2(P(i)Pr3)2]BF4 (3). When the treatment of 1 with (t)BuOK is carried out in dichloromethane at room temperature, the fluoro-alkenylcarbyne [OsHF([triple bond]CCH=CPh2)(CH3CN)(P(i)Pr3)2]BF4 (4) is isolated. Complex 2 reacts with terminal alkynes. The reactions with phenylacetylene and cyclohexylacetylene afford [Os[(E)-CH=CHR](=C=C=CPh2)(CH3CN)2(P(i)Pr3)2]BF4 (R = Ph (5), Cy (6)), containing an alkenyl ligand beside the allenylidene, while the reaction with acetylene in dichloromethane at -20 degrees C gives the hydride-allenylidene-pi-alkyne [OsH(=C=C=CPh2)(eta2-HC[triple bond]CH)(P(i)Pr3)2]BF4 (7), with the alkyne acting as a four-electron donor ligand. In acetonitrile under reflux, complexes 5 and 6 are transformed into the osmacyclopentapyrrole compounds [Os[C=C(CPh2CR=CH)CMe=NH](CH3CN)2]BF4 (R = Ph (8), Cy (9)), as a result of the assembly of the allenylidene ligand, the alkenyl group, and an acetonitrile molecule. The X-ray structures of 2, 5, and 8 are also reported.  相似文献   

9.
Several rhodium(I) complexes of the type [RhX(CO)(PePy2)], [Rh(diene)(PePy)]+, and [Rh(diene)(PePy2)]+ (PePyn = P(CH2CH2Py)nPh3-n; Py = 2-pyridyl; n = 1, 2) have been prepared. The two former are square planar; the latter are pentacoordinated for diene = tetrafluorobenzobarrelene or norbornadiene (confirmed by X-ray diffraction), but an equilibrium of 4- and 5-coordinate isomers exists in solution for diene = 1,5-cyclooctadiene. The fluxional behavior of all these complexes is studied by NMR spectroscopy. The complex [Rh(NBD)(PePy2)]PF6.Cl2CH2 crystallizes in the monoclinic space group P21/n with a = 8.455(1) A, b = 18.068(3) A, c = 19.729(3) A, beta = 99.658(3)degrees, and Z = 4. The complexes [Rh(diene)(PePy2)]+ react with CO to give the dimeric complex [Rh2(CO)2[P(CH2CH2Py)2Ph]2](BF4)2 with the pyridylphosphine acting as P,N-chelating and P,N-bridging.  相似文献   

10.
Huang JS  Yu GA  Xie J  Wong KM  Zhu N  Che CM 《Inorganic chemistry》2008,47(20):9166-9181
Reduction of [Fe(III)(Por)Cl] (Por = porphyrinato dianion) with Na2S2O4 followed by reaction with excess PH2Ph, PH2Ad, or PHPh2 afforded [Fe(II)(F20-TPP)(PH2Ph)2] (1a), [Fe(II)(F20-TPP)(PH2Ad)2] (1b), [Fe(II)(F20-TPP)(PHPh2)2] (2a), and [Fe(II)(2,6-Cl2TPP)(PHPh2)2] (2b). Reaction of [Ru(II)(Pc)(DMSO)2] (Pc = phthalocyaninato dianion) with PH2Ph or PHPh2 gave [Ru(II)(Pc)(PH2Ph)2] (3a) and [Ru(II)(Pc)(PHPh2)2] (4). [Ru(II)(Pc)(PH2Ad)2] (3b) and [Ru(II)(Pc)(PH2Bu(t))2] (3c) were isolated by treating a mixture of [Ru(II)(Pc)(DMSO)2] and O=PCl2Ad or PCl2Bu(t) with LiAlH4. Hydrophosphination of CH2=CHR (R = CO2Et, CN) with [Ru(II)(F20-TPP)(PH2Ph)2] or [Ru(II)(F20-TPP)(PHPh2)2] in the presence of (t)BuOK led to the isolation of [Ru(II)(F20-TPP)(P(CH2CH2R)2Ph)2] (R = CO2Et, 5a; CN, 5b) and [Ru(II)(F20-TPP)(P(CH2CH2R)Ph2)2] (R = CO2Et, 6a; CN, 6b). Similar reaction of 3a with CH2=CHCN or MeI gave [Ru(II)(Pc)(P(CH2CH2CN)2Ph)2] (7) or [Ru(II)(Pc)(PMe2Ph)2] (8). The reactions of 4 with CH2=CHR (R = CO2Et, CN, C(O)Me, P(O)(OEt)2, S(O)2Ph), CH2=C(Me)CO2Me, CH(CO2Me)=CHCO2Me, MeI, BnCl, and RBr (R = (n)Bu, CH2=CHCH2, MeC[triple bond]CCH2, HC[triple bond]CCH2) in the presence of (t)BuOK afforded [Ru(II)(Pc)(P(CH2CH2R)Ph2)2] (R = CO2Et, 9a; CN, 9b; C(O)Me, 9c; P(O)(OEt)2, 9d; S(O)2Ph, 9e), [Ru(II)(Pc)(P(CH2CH(Me)CO2Me)Ph2)2] (9f), [Ru(II)(Pc)(P(CH(CO2Me)CH2CO2Me)Ph2)2] (9g), and [Ru(II)(Pc)(PRPh2)2] (R = Me, 10a; Bu(n), 10b; Bn, 10c; CH2CH=CH2, 10d; CH2C[triple bond]CMe, 10e; CH=C=CH2, 10f). X-ray crystal structure determinations revealed Fe-P distances of 2.2597(9) (1a) and 2.309(2) A (2bx 2 CH2Cl2) and Ru-P distances of 2.3707(13) (3b), 2.373(2) (3c), 2.3478(11) (4), and 2.3754(10) A (5b x 2 CH2Cl2). Both the crystal structures of 3b and 4 feature intermolecular C-H...pi interactions, which link the molecules into 3D and 2D networks, respectively.  相似文献   

11.
The first series of Rh(I) distibine complexes with organometallic co-ligands is described, including the five-coordinate [Rh(cod)(distibine)Cl], the 16-electron planar cations [Rh(cod)(distibine)]BF4 and [Rh{Ph2Sb(CH2)3SbPh2}2]BF4 and the five-coordinate [Rh(CO)(distibine)2][Rh(CO)2Cl2] (distibine=R2Sb(CH2)3SbR2, R=Ph or Me, and o-C6H4(CH2SbMe2)2). The corresponding Ir(I) species [Ir(cod)(distibine)]BF4 and [Ir{Ph2Sb(CH2)3SbPh2}2]BF4 have also been prepared. The complexes have been characterised by 1H and 13C{1H} NMR and IR spectroscopy, electrospray mass spectrometry and microanalysis. The crystal structure of the anion exchanged [Rh(CO){Ph2Sb(CH2)3SbPh2}2]PF(6).3/4CH2Cl2 is also described. The methyl-substituted distibine complexes are less stable than the complexes of Ph2Sb(CH2)3SbPh2, with C-Sb fission occurring in some of the complexes of the former. The salts [Rh(CO){Ph2Sb(CH2)3SbPh2}2]PF6 and [Rh{Ph2Sb(CH2)3SbPh2}2]BF4 undergo oxidative addition with Br2 to give the known [RhBr2{Ph2Sb(CH2)3SbPh2}2]+, while using HCl gives the same hydride complex from both precursors, which is tentatively assigned as [RhHCl2{Ph2Sb(CH2)3SbPh2}]. An unexpected further Rh(III) product from this reaction, trans-[RhCl2{Ph2Sb(CH2)3SbPh2}{PhClSb(CH2)3SbClPh}]Cl, was identified by a crystal structure analysis and represents the first structurally characterised example of a chlorostibine coordinated to a metal. [Rh{Ph2Sb(CH2)3SbPh2}2]BF4 reacts with CO to give [Rh(CO){Ph2Sb(CH2)3SbPh2}2]BF4 initially, and upon further exposure this species undergoes further reversible carbonylation to give a cis-dicarbonyl species thought to be [Rh(CO)2{Ph2Sb(CH2)3SbPh2}{kappa1Sb-Ph2Sb(CH2)3SbPh2}]BF4 which converts back to the monocarbonyl complex when the CO atmosphere is replaced with N2.  相似文献   

12.
The reactivity of [HMCo3(CO)12] and [Et4N][MCo3(CO)12] (M = Fe, Ru) toward phosphine selenides such as Ph3PSe, Ph2P(Se)CH2PPh2, Ph2(2-C5H4N)PSe, Ph2(2-C4H3S)PSe, and Ph2[(2-C5H4N)(2-C4H2S)]PSe has been studied with the aim to obtain new selenido-carbonyl bimetallic clusters. The reactions of the hydrido clusters give two main classes of products: (i) triangular clusters with a mu3-Se capping ligand of the type [MCo2(mu3-Se)(CO)(9-x)L(y)] resulting from the selenium transfer (x = y = 1, 2, with L = monodentate ligand; x = 2, 4, and y = 1, 2, with L = bidentate ligand) (M = Fe, Ru) and (ii) tetranuclear clusters of the type [HMCo3(CO)12xL(y)] obtained by simple substitution of axial, Co-bound carbonyl groups by the deselenized phosphine ligand. The crystal structures of [HRuCo3(CO)7(mu-CO)3(mu-dppy)] (1), [MCo2(mu3-Se)(CO)7(mu-dppy)] (M = Fe (16) or Ru (2)), and [RuCo2(mu3-Se)(CO)7(mu-dppm)] (12) are reported [dppy = Ph2(2-C5H4N)P, dppm = Ph2PCH2PPh2]. Clusters 2, 12, and 16 are the first examples of trinuclear bimetallic selenido clusters substituted by phosphines. Their core consists of metal triangles capped by a mu3-selenium atom with the bidentate ligand bridging two metals in equatorial positions. The core of cluster 1 consists of a RuCo3 tetrahedron, each Co-Co bond being bridged by a carbonyl group and one further bridged by a dppy ligand. The coordination of dppy in a pseudoaxial position causes the migration of the hydride ligand to the Ru(mu-H)Co edge. In contrast to the reactions of the hydrido clusters, those with the anionic clusters [MCo3(CO)12]- do not lead to Se transfer from phosphorus to the cluster but only to CO substitution by the deselenized phosphine.  相似文献   

13.
A variety of Group 10 metal complexes [MXY(dfppp)], M = Ni, X, Y = Cl, Br, M = Pd, Pt, X, Y = Cl or CH(3), containing the recently reported highly fluorous diphosphine ligand, dfppp, 1,3-bis[di(fluoroponytail)phosphino]propane, {(p-F(13)C(6)C(6)H(4))(2)P}(2)(CH(2))(3) have been synthesised. They have been characterised by NMR, mass spectrometry and microanalysis, with two platinum complexes, [PtCl(2)(dfppp)] and [PtClMe(dfppp)], structurally characterised by single crystal X-ray diffraction studies. The highly fluorous nature of the ligands affords the complexes good supercritical CO(2) solubility as measured by supercritical fluid extraction (SFE), and has allowed for the copolymerisation of CO and ethylene using [PdClMe(dfppp)] as the catalyst precursor and CO(2) as the solvent. Additionally, PtCl(2) complexes of the new ligands dfppb, {(p-F(13)C(6)C(6)H(4))(2)P}(2)(CH(2))(4), and dfpop, {(p-F(13)C(6)C(6)H(4)O)(2)P}(2)(CH(2))(3), have also been prepared and characterised.  相似文献   

14.
A library of fluorous, (1H,1H,2H,2H-perfluoroalkyl)silyl-substituted derivatives of triphenylphosphine, Ph(3-a)P[C(6)H(5-y)[SiMe(3-b)(CH(2)CH(2)C(x)F(2x+1))(b)](y)-pos](a) [a = 1-3; b = 1-3; x = 4, 6, 8, or 10; pos = 3, 4 (y = 1) or 3,5 (y = 2)], was prepared using parallel synthetic techniques. Upon variation of these four parameters, a total of 108 different fluorous phosphines can be synthesized. Using factorial design, 37 phosphines were selected and their partition coefficients in the typical fluorous biphasic solvent system PFMCH/toluene (PFMCH = perfluoromethylcyclohexane) determined. By fitting of the partition coefficient data to linear functions of the parameters a, b, and x, the partition coefficients of the remaining 71 fluorous phosphines, which were not prepared, could be predicted. Using this approach, some unexpected trends in the dependence of the partition coefficient on variations of the four parameters became clear, resulting in a better understanding of the optimum fluorous substitution pattern for obtaining the highest partition coefficient (P). In this way, the partition coefficient was increased by 2 orders of magnitude, i.e., from the initial value P = 7.8 for 1(3, 2, 6, C4) to P > 238 for 1(2, 3, 6, C3C5). Para- and 3,5-substituted phosphines showed irregular behavior in the sense that elongation or increase of the number of perfluoroalkyl tails did not necessarily lead to higher partition coefficients. Particularly high values were found for phosphines containing a total of 72 fluorinated carbon atoms on the meta position(s) of the aryl rings. Linear relationships were found between the predicted log P of 1(a, b, x, C4) and the experimentally determined log P values of fluorous diphosphines [CH(2)P[C(6)H(4)(SiMe(3-b)(CH(2)CH(2)C(6)F(13))(b))-4](2)](2) and monophosphines Ph(3-a)P(C(6)H(4)(CH(2)CH(2)C(6)F(13))-4)(a). One of the most fluorophilic phosphines, i.e., 1(3, 1, 8, C3C5), was applied and efficiently recycled in rhodium-catalyzed, fluorous hydrosilylation of 1-hexene by HSiMe(2)Ph using PFMCH as the fluorous phase and the substrates as the organic phase. It was demonstrated that a higher partition coefficient of the ligand in PFMCH/toluene at 0 degrees C indeed resulted in less leaching of both the catalyst and the free ligand during phase separation.  相似文献   

15.
Various half-sandwich titanium complexes containing iminoimidazolidide ligands, CpTiCl(2)[1,3-R(2)(CH(2)N)(2)C=N] (1a-d) [R = Ph (a), 2,6-Me(2)C(6)H(3) (b), cyclohexyl (c), (t)Bu (d)], have been employed as the catalyst precursors for ethylene polymerisation, syndiospecific styrene polymerisation, and copolymerisation of ethylene with 1-hexene in the presence of MAO cocatalyst; 1d showed the highest catalytic activity for ethylene polymerisation whereas 1b showed the highest activity for syndiospecific styrene polymerisation.  相似文献   

16.
The diastereoselective addition of Ph(2)PH to the chiral ortho-substituted eta(6)-benzaldimine complexes (eta(6)-o-X-C(6)H(4)CH=NAr)Cr(CO)(3) (1, X = MeO, Ar = p-C(6)H(4)OMe; 2, X = Cl, Ar = Ph) leads to the formation of the corresponding chiral aminophosphines (alpha-P,N) Ph(2)P-CH(Ar(1))-NHAr(2) (3, Ar(1) = o-C(6)H(4)(OCH(3))[Cr(CO)(3)], Ar(2) = p-C(6)H(4)OCH(3); 4, Ar(1) = o-C(6)H(4)Cl[Cr(CO)(3)], Ar(2) = Ph) in equilibrium with the starting materials. The uncomplexed benzaldimine (o-ClC(6)H(4)CH=NPh), 2', analogously produces an equilibrium amount of the corresponding aminophosphine Ph(2)P-CH(Ar(1))-NHAr(2) (4', Ar(1) = o-C(6)H(4)Cl, Ar(2) = Ph). Depending on the equilibrium constant, the subsequent addition of (1)/(2) equiv of [RhCl(COD)](2) (COD = 1,5-cyclooctadiene) leads to either Ph(2)PH oxidative addition in the case of 3 or to the corresponding [RhCl(COD)(alpha-P,N)] complexes [RhCl(COD)(Ph(2)P-CH[o-C(6)H(4)Cl[Cr(CO)(3)]]-NHPh)] (5) and [RhCl(COD)(Ph(2)P-CH(o-C(6)H(4)Cl)-NHPh)] (5') in the cases of the aminophosphines 4 and 4'. The addition of the latter ligands, as racemic mixtures, to (1)/(4) equiv of [Rh(CO)(2)Cl](2) leads to the [RhCl(CO)(alpha-P,N)(2)] complexes [RhCO(Ph(2)P-CH[o-C(6)H(4)Cl[Cr(CO)(3)]]-NHPh)(2)Cl] (7) or [RhCO(Ph(2)P-CH(o-C(6)H(4)Cl)-NHPh)(2)Cl] (7') as mixtures of (R(C),S(C))/(S(C),R(C)) and (R(C),R(C))/(S(C),S(C)) diastereomers. The rhodium complexes 5 and 7' have been fully characterized by IR and (31)P NMR spectroscopies and X-ray crystallography. These compounds exhibit intramolecular Rh-Cl.H-N interactions in the solid state and in solution. The stability of the new rhodium complexes has been studied under different CO pressures. Under 1 atm of CO, 5 is converted to an unstable complex [RhCl(CO)(2)(alpha-P,N)], 6, which undergoes ligand redistribution leading to 7 plus an unidentified complex. This reaction is inhibited under higher CO or syngas pressure, as confirmed by the observation of the same catalytic activity in hydroformylation when styrene was added to a catalytic mixture that was either freshly prepared or left standing for 20 h under high CO pressure.  相似文献   

17.
The iron complexes CpFe(P(Ph)(2)N(Bn)(2))Cl (1-Cl), CpFe(P(Ph)(2)N(Ph)(2))Cl (2-Cl), and CpFe(P(Ph)(2)C(5))Cl (3-Cl)(where P(Ph)(2)N(Bn)(2) is 1,5-dibenzyl-1,5-diaza-3,7-diphenyl-3,7-diphosphacyclooctane, P(Ph)(2)N(Ph)(2) is 1,3,5,7-tetraphenyl-1,5-diaza-3,7-diphosphacyclooctane, and P(Ph)(2)C(5) is 1,4-diphenyl-1,4-diphosphacycloheptane) have been synthesized and characterized by NMR spectroscopy, electrochemical studies, and X-ray diffraction. These chloride derivatives are readily converted to the corresponding hydride complexes [CpFe(P(Ph)(2)N(Bn)(2))H (1-H), CpFe(P(Ph)(2)N(Ph)(2))H (2-H), CpFe(P(Ph)(2)C(5))H (3-H)] and H(2) complexes [CpFe(P(Ph)(2)N(Bn)(2))(H(2))]BAr(F)(4), [1-H(2)]BAr(F)(4), (where BAr(F)(4) is B[(3,5-(CF(3))(2)C(6)H(3))(4)](-)), [CpFe(P(Ph)(2)N(Ph)(2))(H(2))]BAr(F)(4), [2-H(2)]BAr(F)(4), and [CpFe(P(Ph)(2)C(5))(H(2))]BAr(F)(4), [3-H(2)]BAr(F)(4), as well as [CpFe(P(Ph)(2)N(Bn)(2))(CO)]BAr(F)(4), [1-CO]Cl. Structural studies are reported for [1-H(2)]BAr(F)(4), 1-H, 2-H, and [1-CO]Cl. The conformations adopted by the chelate rings of the P(Ph)(2)N(Bn)(2) ligand in the different complexes are determined by attractive or repulsive interactions between the sixth ligand of these pseudo-octahedral complexes and the pendant N atom of the ring adjacent to the sixth ligand. An example of an attractive interaction is the observation that the distance between the N atom of the pendant amine and the C atom of the coordinated CO ligand for [1-CO]BAr(F)(4) is 2.848 ?, considerably shorter than the sum of the van der Waals radii of N and C atoms. Studies of H/D exchange by the complexes [1-H(2)](+), [2-H(2)](+), and [3-H(2)](+) carried out using H(2) and D(2) indicate that the relatively rapid H/D exchange observed for [1-H(2)](+) and [2-H(2)](+) compared to [3-H(2)](+) is consistent with intramolecular heterolytic cleavage of H(2) mediated by the pendant amine. Computational studies indicate a low barrier for heterolytic cleavage of H(2). These mononuclear Fe(II) dihydrogen complexes containing pendant amines in the ligands mimic crucial features of the distal Fe site of the active site of the [FeFe]-hydrogenase required for H-H bond formation and cleavage.  相似文献   

18.
The diastereomeric methyl rhenium complex [CpRe(NO){P(Me)(Ph)(2-C6H4NMe2)}(CH3)] was prepared in two steps from chiral racemic [CpRe(NO)(CO)(NCMe)]BF4 and the chiral racemic phosphine P(Me)(Ph)(2-C6H4NMe2). The unlike diastereomer reacts preferentially with MeSO3H to give the ring-closed ionic complex unlike-[CpRe(NO){P(Me)(Ph)(2-C6H4NMe2)}]MeSO3 along with unreacted like-[CpRe(NO){P(Me)(Ph)(2-C6H4NMe2)}(CH3)], which is easily separated and converted to like-[CpRe(NO){P(Me)(Ph)(2-C6H4NMe2)}]MeSO3. Starting from (R)-P(Me)(Ph)(2-C6H4NMe2), the diastereomerically and enantiomerically pure complexes (RRe,SP)-[CpRe(NO){P(Me)(Ph)(2-C6H4NMe2)}]MeSO3 and (SRe,SP)-[CpRe(NO){P(Me)(Ph)(2-C6H4NMe2)}]MeSO3 were obtained. Thus, this reaction sequence demonstrates a highly diastereoselective proton transfer from a functionalized chiral phosphine to a transition metal. Furthermore, it provides efficient access to enantiomerically pure half-sandwich rhenium complexes.  相似文献   

19.
Adams RD  Kwon OS  Smith MD 《Inorganic chemistry》2002,41(24):6281-6290
The reaction of Mn(2)(CO)(9)(NCMe) with thiirane yielded the sulfidomanganese carbonyl compounds Mn(2)(CO)(7)(mu-S(2)), 2, Mn(4)(CO)(15)(mu(3)-S(2))(mu(4)-S(2)), 3, and Mn(4)(CO)(14)(NCMe)(mu(3)-S(2))(mu(4)-S(2)), 4, by transfer of sulfur from the thiirane to the manganese complex. Compound 3 was obtained in better yield from the reaction of 2 with CO, and compound 4 is obtained from the reaction of 2 with NCMe. The reaction of 2 with PMe(2)Ph yielded the tetramanganese disulfide Mn(4)(CO)(15)(PMe(2)Ph)(2)(mu(3)-S)(2), 5, and S=PMe(2)Ph. The reaction of 5 with PMe(2)Ph yielded Mn(4)(CO)(14)(PMe(2)Ph)(3)(mu(3)-S)(2), 6, by ligand substitution. The reaction of 2 with AsMe(2)Ph yielded the new complexes Mn(4)(CO)(14)(AsMe(2)Ph)(2)(mu(3)-S(2))(2), 7, Mn(4)(CO)(14)(AsMe(2)Ph)(mu(3)-S(2))(mu(4)-S(2)), 8, Mn(6)(CO)(20)(AsMe(2)Ph)(2)(mu(4)-S(2))(3), 9, and Mn(2)(CO)(6)(AsMe(2)Ph)(mu-S(2)), 10. Reaction of 2 with AsPh(3) yielded the monosubstitution derivative Mn(2)(CO)(6)(AsPh(3))(mu-S(2)), 11. Reaction of 7 with PMe(2)Ph yielded Mn(4)(CO)(15)(AsMe(2)Ph)(2)(mu(3)-S)(2), 12. The phosphine analogue of 7, Mn(4)(CO)(14)(PMe(2)Ph)(2)(mu(3)-S(2))(2), 13, was prepared from the reaction of Mn(2)(CO)(9)(PMe(2)Ph) with Me(3)NO and thiirane. Compounds 2-9 and 11-13 were characterized by single-crystal X-ray diffraction. Compound 2 contains a disulfido ligand that bridges two Mn(CO)(3) groups that are joined by a Mn-Mn single bond, 2.6745(5) A in length. A carbonyl ligand bridges the Mn-Mn bond. Compounds 3 and 4 contain four manganese atoms with one triply bridging and one quadruply bridging disulfido ligand. Compounds 5 and 6 contain four manganese atoms with two triply bridging sulfido ligands. Compound 9 contains three quadruply bridging disulfido ligands imbedded in a cluster of six manganese atoms.  相似文献   

20.
Catalytic dehydrocoupling of phosphines was investigated using the anionic zirconocene trihydride salts [Cp*2Zr(mu-H)3Li]3 (1 a) or [Cp*2Zr(mu-H)3K(thf)4] (1 b), and the metallocycles [CpTi(NPtBu3)(CH2)4] (6) and [Cp*M(NPtBu3)(CH2)4] (M=Ti 20, Zr 21) as catalyst precursors. Dehydrocoupling of primary phosphines RPH2 (R=Ph, C6H2Me3, Cy, C10H7) gave both dehydrocoupled dimers RP(H)P(H)R or cyclic oligophosphines (RP)n (n=4, 5) while reaction of tBu3C6H2PH2 gave the phosphaindoline tBu2(Me2CCH2)C6H2PH 9. Stoichiometric reactions of these catalyst precursors with primary phosphines afforded [Cp*2Zr((PR)2)H][K(thf)4] (R=Ph 2, Cy 3, C6H2Me3 4), [Cp*2Zr((PPh)3)H][K(thf)4] (5), [CpTi(NPtBu3)(PPh)3] (7) and [CpTi(NPtBu3)(mu-PHPh)]2 (8), while reaction of 6 with (C6H2tBu3)PH2 in the presence of PMe3 afforded [CpTi(NPtBu3)(PMe3)(P(C6H2tBu3)] (10). The secondary phosphines Ph2PH and (PhHPCH2)2CH2 also undergo dehydrocoupling affording (Ph2P)2 and (PhPCH2)2CH2. The bisphosphines (CH2PH2)2 and C6H4(PH2)2 are dehydrocoupled to give (PCH2CH2PH)2)(12) and (C6H4P(PH))2 (13) while prolonged reaction of 13 gave (C6H4P2)(8) (14). The analogous bisphosphine Me2C6H4(PH)2 (17) was prepared and dehydrocoupling catalysis afforded (Me2C6H2P(PH))2 (18) and subsequently [(Me2C6H2P2)2(mu-Me2C6H2P2)]2 (19). Stoichiometric reactions with these bisphosphines gave [Cp*2Zr(H)(PH)2C6-H4][Li(thf)4] (22), [CpTi(NPtBu3)(PH)2C6H4]2 (23) and [Cp*Ti(NPtBu3)(PH)2C6H4] (24). Mechanistic implications are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号