首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The surface properties of aluminum, such as chemical composition, roughness, friction, adhesion, and wear, can play an important role in the performance of micro-/nano-electromechanical systems, e.g., digital micromirror devices. Aluminum substrates chemically reacted with octadecylphosphonic acid (ODP/Al), decylphosphonic acid (DP/Al), and octylphosphonic acid (OP/Al) have been investigated and characterized by X-ray photoelectron spectroscopy (XPS), contact angle measurements, and atomic force microscopy (AFM). XPS analysis confirmed the presence of alkylphosphonate molecules on ODP/Al, DP/Al, and OP/Al. No phosphonates were found on bare Al as a control. The sessile drop static contact angle of pure water on ODP/Al and DP/Al was typically more than 115 degrees and on OP/Al typically less than 105 degrees indicating that all phosphonic acid reacted Al samples were highly hydrophobic. The root-mean-square surface roughness for ODP/Al, DP/Al, OP/Al, and bare Al was less than 15 nm as determined by AFM. The surface energy for ODP/Al and DP/Al was determined to be approximately 21 and 22 mJ/m2, respectively, by the Zisman plot method, compared to 25 mJ/m2 for OP/Al. ODP/Al and OP/Al were studied by friction force microscopy, a derivative of AFM, to better understand their micro-/nano-tribological properties. ODP/Al gave the lowest coefficient of friction values while bare Al gave the highest. The adhesion forces for ODP/Al and OP/Al were comparable.  相似文献   

2.
A self-assembled monolayer (SAM) has been produced by reaction of 1H,1H,2H,2H-perfluorodecyldimethylchlorosilane (PFMS) with an oxidized copper (Cu) substrate and investigated by x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), friction force microscopy (FFM), a derivative of AFM, and contact angle measurement. FFM showed a significant reduction in the adhesive force and friction coefficient of PFMS modified Cu (PFMS/Cu) compared to unmodified Cu. The perfluoroalkyl SAM on Cu is found to be extremely hydrophobic, yielding sessile drop static contact angles of more than 130 degrees for pure water and a "surface energy" (which is proportional to the Zisman critical surface tension for a Cu surface with 0 rms roughness) of 14.5 mJm2(nMm). Treatment by exposure to harsh conditions showed that PFMS/Cu SAM can withstand boiling nitric acid (pH=1.8), boiling water, and warm sodium hydroxide (pH=12, 60 degrees C) solutions for at least 30 min. Furthermore, no SAM degradation was observed when PFMS/Cu was exposed to warm nitric acid solution for up to 70 min at 60 degrees C or 50 min at 80 degrees C. Extremely hydrophobic (low surface energy) and stable PFMS/Cu SAMs could be useful as corrosion inhibitors in micro/nanoelectronic devices and/or as promoters for antiwetting, low adhesion surfaces or dropwise condensation on heat exchange surfaces.  相似文献   

3.
Surface roughness plays an important role in affecting the adhesive force and friction force in microelectromechanical systems (MEMS)/nanoelectromechanical systems (NEMS). One effective approach of reducing adhesion and friction of contacting interfaces is to create textured surface, which is especially beneficial for MEMS'/NEMS' production yield and product reliability. In this article, we present a convenient method to fabricate the nano‐textured surfaces by self‐assembling Au nanoparticles (NPs) on the silicon (100) surfaces. The nanoparticle‐textured surfaces (NPTS) with different packing density and texture height were prepared by controlling the assembling time and the size of Au NPs. The morphologies and chemical states of NPTS were characterized by atomic force microscope (AFM), field emission scanning electron microscope, and XPS. The adhesion and friction on the NPTS were studied by AFM with colloidal tip. The results show that the nano‐textured surfaces have effectively reduced adhesive force and friction force compared with the 3‐aminopropyl trimethoxysilane self‐assembled monolayer surfaces. The lowered adhesion and friction were attributed to the reduced real area of contact between NPTS and colloidal tip. The adhesion and friction of the NPTS are varying with the texture packing density and dependent on both the texture height and asperities spacing, which are related to the size and coverage ratio of NPs on surfaces. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
The effect of argon, oxygen, and nitrogen plasma treatment of solvent cast EPDM rubber films has been investigated by means of atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and surface energy measurements. Plasma treatment leads to changes in the surface energy from 25 to 70 mN/m. Treatment conditions influenced both the changes in surface energy and the stability, and it became more difficult to obtain good contact angle measurements after longer (> ca. 4 min) treatment times, probably because of an increasingly uneven surface structure. XPS analyses revealed that up to 20 at. % oxygen can be easily incorporated and that variations of approximately 5% can be controlled by the plasma conditions. Oxygen was mainly found in hydroxyl groups, but also as carbonyl and carboxyl. XPS analyses showed more stable surfaces than expected from contact angles, probably because XPS analysis is less surface sensitive than contact angle measurements. AFM measurements revealed different surface structures with the three gases. The surface roughness increased generally with treatment time, and dramatic changes could be observed at longer times. At short times, surface energy changes were much faster than the changes in surface structure, showing that plasma treatment conditions can be utilized to tailor both surface energies and surface structure of EPDM rubber.  相似文献   

5.
Gold-coated atomic force microscope (AFM) tips functionalized with amine-, hydroxyl-, carboxylic acid-, and methyl-terminated alkanethiol molecules were used to probe the adhesive forces of polystyrene and poly(acrylic acid) films in dry air (relative humidity < 0.5%). X-ray photoelectron spectroscopy (XPS) and contact angle measurements confirmed the quality and uniformity of similarly treated gold surfaces and the polymer films. XPS indicated that the amine-functionalized thiol films were protonated and comprised of multilayers. Contact angle data were used to calculate surface free energies, and DMT theory yielded the works of adhesion and interfacial free energies for the tip-substrate combinations. In the case of polystyrene, the work of adhesion followed the order methyl > carboxylic acid > hydroxyl > amine. For poly(acrylic acid), the observed order was hydroxyl > amine > carboxylic acid > methyl.  相似文献   

6.
The covalent attachment of semicarbazide-functionalized layers to hydrogen-terminated Si(111) surfaces is reported. The surface modification, based on the photoinduced hydrosilylation of a Si(111) surface with protected semicarbazide-functionalized alkenes, was investigated by means of X-ray photoelectron spectroscopy (XPS), contact angle measurements, and atomic force microscopy (AFM). The removal of the protecting group yielded a semicarbazide-terminated monolayer which was reacted with peptides bearing a glyoxylyl group for site-specific alpha-oxo semicarbazone ligation.  相似文献   

7.
The wetting of two different model cellulose surfaces has been studied; a regenerated cellulose (RG) surface prepared by spin-coating, and a novel multilayer film of poly(ethyleneimine) and a carboxymethylated microfibrillated cellulose (MFC). The cellulose films were characterized in detail using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). AFM indicates smooth and continuous films on a nanometer scale and the RMS roughness of the RG cellulose and MFC surfaces was determined to be 3 and 6 nm, respectively. The cellulose films were modified by coating with various amounts of an anionic fluorosurfactant, perfluorooctadecanoic acid, or covalently modified with pentadecafluorooctanyl chloride. The fluorinated cellulose films were used to follow the spreading mechanisms of three different oil mixtures. The viscosity and surface tension of the oils were found to be essential parameters governing the spreading kinetics on these surfaces. XPS and dispersive surface energy measurements were made on the cellulose films coated with perfluorooctadecanoic acid. A strong correlation was found between the surface concentration of fluorine, the dispersive surface energy and the contact angle of castor oil on the surface. A dispersive surface energy less than 18 mN/m was required in order for the cellulose surface to be non-wetting (theta e>90 degrees ) by castor oil.  相似文献   

8.
In this work, the effect of atmospheric-pressure plasma treatments on surface properties of polyimide film are investigated in terms of X-ray photoelectron spectroscopy (XPS), contact angles, and atomic force microscopy (AFM). The adhesion characteristics of the film are also studied in the peel strengths of polyimide/copper film. As experimental results, the polyimide surfaces treated by plasma lead to an increase of oxygen-containing functional groups or the polar component of the surface free energy, resulting in improving the adhesion characteristics of the polyimide/copper foil. Also, the roughness of the film surfaces, confirmed by AFM observation, is largely increased. These results can be explained by the fact that the atmospheric-pressure plasma treatment of polyimide surface yields several oxygen complexes in hydrophobic surfaces, which can play an important role in increasing the surface polarity, wettability, and the adhesion characteristics of the polyimide/copper system.  相似文献   

9.
Here we have demonstrated that radio frequency plasma and ultraviolet-ozone (UVO) surface modifications are effective treatments for enabling the thermal bonding of polymeric microfluidic chips at temperatures below the T(g) (glass transition temperature) of the polymer. The effects of UVO and plasma treatments on the surface properties of a cyclic polyolefin and polystyrene were examined with X-ray photoelectron spectroscopy (XPS), contact angle measurements, atomic force microscopy (AFM) surface roughness measurements and surface adhesion measurements with AFM force-distance data. Three-point bending tests using a dynamic mechanical analyzer (DMA) were used to characterize the bond strength of thermally sealed polymer parts and the cross-sections of the bonded microchannels were evaluated with scanning electron microscopy (SEM). The experimental results demonstrated that plasma and UVO surface treatments cause changes in the chemical and physical characteristics of the polymer surfaces, resulting in a decrease in T(g) at the surface, and thus allowing the microfluidic chips to be effectively bonded at temperatures lower than the T(g) of the bulk polymer without losing the intended channel geometry.  相似文献   

10.
We describe the formation and characterization of surface-passivating poly(ethylene glycol) (PEG) films on indium tin oxide (ITO) glass substrates. PEG chains with a molecular weight of 2000 and 5000 D were covalently attached to the substrates in a systematic approach using different coupling schemes. The coupling strategies included the direct grafting with PEG-silane, PEG-methacrylate, and PEG-bis(amine), as well as the two-step functionalization with aldehyde-bearing silane films and subsequent coupling with PEG-bis(amine). Elemental analysis by X-ray photoelectron spectroscopy (XPS) confirmed the successful surface modification, and XPS and ellipsometry provided values for film thicknesses. XPS and ellipsometry thickness values were almost identical for PEG-silane films but differed by up to 400% for the other PEG layers, suggesting a homogeneous layer for PEG-silane but an inhomogeneous distribution for other PEG coatings on the molecularly rough ITO substrates. Atomic force microscopy (AFM) and water contact angle goniometry confirmed the different degrees of surface homogeneity of the polymer films, with PEG-silane reducing the AFM rms surface roughness by 50% and the water contact angle hysteresis by 75% compared to uncoated ITO. The ability of the PEG layers to passivate the substrate against the nonspecific adsorption of biopolymers was tested using fluorescence-labeled immunoglobulin G and DNA oligonucleotides in combination with fluorescence microscopy. The results indicate a positive relationship between film density and homogeneity on one hand and the ability to passivate against biopolymer adhesion on the other hand. The most homogeneous layers prepared with PEG-silane reduced the nonspecific adsorption of fluorescence-labeled DNA by a factor of 300 compared to uncoated ITO. In addition, the study finds that the ratio of film thicknesses derived by ellipsometry and XPS is a useful parameter to quantify the structural integrity of PEG layers on molecularly rough ITO surfaces. The findings may be applied to characterize PEG or other polymeric films on similarly coarse substrates.  相似文献   

11.
设计与合成了磺酸甜菜碱型的两性离子化合物: N,N-二甲基氨甲酸乙酯基丙基三乙氧基硅烷磺酸内盐(SiNNS), 利用红外光谱(FTIR)和氢核磁共振波谱(1H NMR)对其分子组成与结构进行了表征. 通过自组装技术将SiNNS分子构筑在玻璃基材表面, 形成了模拟细胞外层膜的仿生表面. 利用原子力显微镜(AFM)、 X光电子能谱(XPS)和接触角测量仪对表面的形貌特征、 化学组成和润湿性进行了表征. 以空白玻璃为对照样品, 研究了这一表面的防雾性能和抗细菌黏附性能. 结果表明, 所制备的两性离子自组装仿生表面具有超亲水性和水下超疏油特性, 其水滴接触角为9.2°, 水下油滴接触角接近180°; 与对照样品相比, 两性离子自组装表面具有优异的防雾性与抗细菌黏附性.  相似文献   

12.
This study investigates the fundamental topochemical effects of dielectric-barrier discharge treatment on bleached chemical pulp and unbleached mechanical pulp fiber surfaces. Fibers were treated with various levels of dielectric-barrier discharge treatment ranging from 0 to 9.27 kW/m2/min. Changes to the fiber surface topochemistry were investigated by atomic force microscopy (AFM). The AFM studies were complemented by inverse gas chromatography (IGC), contact angle evaluation, poly-electrolyte titration, viscosity testing and determination of water retention value (WRV). The static coefficient of friction and zero-span tensile index of sheets were also evaluated. Low dielectric-barrier discharge treatment levels resulted in increased surface energy and roughness. Fibers treated at high applied power levels showed surface energies and roughness levels near that of reference samples as well as evidence of degradation and decreased fiber swelling.  相似文献   

13.
Organic ditellurides (R2Te2 where R = n-butyl (C4), n-octyl (C8), and n-cetyl (C16)) were synthesized, and their adsorption states after oxidation on Au(111) surfaces were studied by X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), theoretical analyses, near-edge X-ray absorption fine structure (NEXAFS) measurements, contact angle measurements, and atomic force microscopy (AFM). The obtained results show that dialkyl ditellurides form autooxidized monolayers (AMs) on the surfaces under ambient conditions and that the oxidation process is accelerated by ambient light. XPS, UPS, and theoretical analyses suggest that the autooxidized ditelluride species consist of polymers or oligomers with Te-O-Te-O network structures stabilized by oxygen bridges between tellurium molecules following the cleavage of tellurium-gold bonds. NEXAFS and contact angle measurements indicate that the average tilt angles of the alkyl chains from the surface normal are smaller for the AMs of dialkyl ditellurides having longer alkyl chains. AFM measurements show defects and roughness features around a few angstroms in height on the surfaces of the dialkyl ditelluride AMs.  相似文献   

14.
The material performance, in a biological environment, is mainly mediated by its surface properties and by the combination of chemical, physical, biological, and mechanical properties required, for a specific application.In this study, the surface of a thermoplastic polyurethane (TPU) material (Elastollan®1180A50) was activated either by plasma or by ultra-violet (UV) irradiation. After surface activation, methacrylic acid (MAA) was linked to the surface of TPU in order to improve its reactivity and to reduce cell adhesion. Grafted surfaces were evaluated by X-ray photoelectron spectroscopy (XPS), by atomic force microscopy (AFM) and by contact angle measurements. Blood compatibility studies and cell adhesion tests with human bone marrow cells (HBMC) were also performed.If was found that UV grafting method led to better results than the plasma activation method, since cell adhesion was reduced when methacrylic acid was grafted to the TPU surface by UV.  相似文献   

15.
In this study, a series of membranes with different amino group densities were prepared to investigate the surface properties of the novel poly(γ-amino-ε-caprolactone-co-ε-caprolactone) (NPCL) copolymer synthesized by our laboratory. Meanwhile, the human mesenchymal stem cells' (hMSCs) behavior on those membranes was examined. The molecular characteristics of the NPCL copolymers were characterized by nuclear magnetic resonance (NMR), size exclusion chromatography (SEC), and differential scanning calorimetry (DSC). Surface properties of membranes were characterized by water contact angle analysis, X-ray photoelectron spectroscopy analysis (XPS), and atomic force microscopy (AFM). It was found that the incorporation of amino groups to the poly(ε-caprolactone) (PCL) backbone resulted in an augmented wettability, a decreased crystallinity, and also an increased surface roughness on the NPCL membranes. In vitro cell experiments showed a significant enhancement in hMSCs' adhesion, proliferation, and osteogenic differentiation on NPCL membranes compared with virgin PCL membrane, and demonstrated that surface properties of membrane played an important role in tailoring cell behavior.  相似文献   

16.
Self‐assembled poly(amide amine)‐copper (PAMAM/Cu) film on silicon was prepared and investigated by means of contact angle measurement, XPS and atomic force microscopy (AFM). The tribological properties were evaluated using a reciprocal ball‐on‐disc test rig and a lateral force microscope. Results of XPS show the existence of Cu(0) and PAMAM molecule on the surface of the film. Compared with the self‐assembled monolayer of the poly(amide amine) generation 4.0 dendrimer, the friction force of PAMAM/Cu film is lower and the friction coefficient is smaller which can be attributed to the existence of Cu nanoparticles. The PAMAM/Cu film shows a good lubrication effect. The stability of friction and wear resistance of film is improved. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Silicon wafers with thermal silicon oxide layers were cleaned and hydrophilized by three different methods: (1) the remote chemical analysis (RCA) wet cleaning by use of ammonia and hydrogen peroxide mixture solutions, (2) water-vapor plasma cleaning, and (3) UV/ozone combined cleaning. All procedures were found to remove effectively organic contaminations on wafers and gave identical characteristics of the contact angle, the surface roughness and the normal force interactions, measured by atomic force microscopy (AFM). However, it is found that wafers cleaned by the RCA method have several times larger friction coefficients than those cleaned by the plasma and UV/ozone methods. The difference was explained by the atomic-scale topological difference induced during the RCA cleaning. This study reveals the lateral force microscopy as a very sensitive method to detect the microstructure of surfaces.  相似文献   

18.
Using large-area (cm2) single-crystal mica sheets as the templating substrate, we have created correspondingly large template-stripped (TS) gold films (thickness 82 +/- 2 nm) that appear smooth to within 0.2 nm rms roughness over their entire area. These gold films, created without the use of any releasing solvent, are characterized using AFM, X-ray diffraction, multiple beam interferometric fringes of equal chromatic order (FECO), and contact angle measurements. Being molecularly smooth over large areas and (adjustably) semitransparent, these films are especially suitable for use in the surface force balance (SFB), as shown by measurements of the normal force (F) versus distance (D) profiles between such a flat gold surface and a bare mica surface in water. The F(D) profiles are in good agreement with DLVO theory down to molecular contact and indicate that the gold surface is negatively charged under water.  相似文献   

19.
The time evolution of oxygen plasma treated polystyrene(PS)surfaces was investigated upon storing them in theair under controlled humidity conditions.The methods of water contact angle,X-ray photoelectron spectroscopy(XPS),sumfrequency generation(SFG)vibrational spectroscopy,and atomic force microscopy(AFM)were used to infer the surfaceproperties and structure.Chemical groups containing oxygen were formed on the PS surface with the plasma treatment,demonstrated by water contact angle and XPS.The surface polarity decayed markedly on time,as assessed by steady increasein the water contact angle as a function of storage time,from zero to around 60°.The observed decay is interpreted as arisingfrom surface rearrangement processes to burying polar groups away from the uppermost layer of the surfaces,which is incontact with air.On the other hand,XPS results show that the chemical composition in the first 3 nm surface layer isunaffected by the surface aging,and the depth profile of oxygen is essentially the same with time.A possible change of PSsurface roughness was examined by AFM,and it showed that the increase of water contact angle during surface aging couldnot be attributed to surface roughness.Thus,it is concluded that surface aging is attributable to surface reorganization andthe motion of oxygen containing groups is confined within the XPS probing depth.SFG spectroscopy,which is intrinsicallyinterface-specific,was used to detect the chemical structure of PS surface at the molecular level after various aging times.The results are interpreted as follows.During the aging of the plasma treated PS surfaces,the oxygen containing groupsundergo reorientation processes toward the polymer bulk and/or parallel to the surface,while the CH_2 moiety stands up onthe PS surface.Our results indicate that the surface configuration changes do not require large length scale segmentalmotions or migration of macromolecules.Motions that are responsible for surface configuration changes could be relativelysmall rotational motions.The aging behaviors under different relative humidity conditions were shown to be similar from18% to 91%,whereas the kinetics of surface polarity decays were faster in higher relative humidity.Here,the surfacerearrangement of polystyrene films that were previously treated by oxygen plasma and aged,and was investigated in terms ofcontact angle after the water immersion.The contact angles of the water-immersed samples were found to change andapproach the initial values before the immersion asymptotically.  相似文献   

20.
Polyester‐based polyurethane/nanosilica composites were prepared via in situ polymerization and investigated by contact angle measurement, transmission electron microscopy (TEM), atomic force microscopy (AFM) and peel testing in an Instron testing machine. The contact angle and surface free energy results show that nanosilica tended to enrich at the interface between nanocomposite polymers and the substrates, TEM indicated that nanosilica particles were evenly dispersed in the bulk and AFM demonstrated that nanoparticles were located at both the surfaces and interfaces of nanocomposite polymers and that the roughness of both the surfaces and interfaces had a decreasing tendency as the nanosilica content increased, as did the adhesion strength between the nanocomposite polymers and substrates. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号