首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vibrational spectroscopy standoff detection of explosives   总被引:1,自引:0,他引:1  
Standoff infrared and Raman spectroscopy (SIRS and SRS) detection systems were designed from commercial instrumentation and successfully tested in remote detection of high explosives (HE). The SIRS system was configured by coupling a Fourier-transform infrared interferometer to a gold mirror and detector. The SRS instrument was built by fiber coupling a spectrograph to a reflective telescope. HE samples were detected on stainless steel surfaces as thin films (2–30 μg/cm2) for SIRS experiments and as particles (3–85 mg) for SRS measurements. Nitroaromatic HEs: TNT, DNT, RDX, C4, and Semtex-H and TATP cyclic peroxide homemade explosive were used as targets. For the SIRS experiments, samples were placed at increasing distances and an infrared beam was reflected from the stainless steel surfaces coated with the target chemicals at an angle of ∼180° from surface normal. Stainless steel plates containing TNT and RDX were first characterized for coverage distribution and surface concentration by reflection–absorption infrared spectroscopy. Targets were then placed at the standoff distance and SIRS spectra were collected in active reflectance mode. Limits of detection (LOD) were determined for all distances measured for the target HE. LOD values of 18 and 20 μg/cm2 were obtained for TNT and RDX, respectively, for the SIR longest standoff distance measured. For SRS experiments, as low as 3 mg of TNT and RDX were detected at 7 m source–target distance employing 488 and 514.5 nm excitation wavelengths. The first detection and quantification study of the important formulation C4 is reported. Detection limits as function of laser powers and acquisition times and at a standoff distance of 7 m were obtained.  相似文献   

2.
In this review we discuss the application of laser-induced breakdown spectroscopy (LIBS) to the problem of detection of residues of explosives. Research in this area presented in open literature is reviewed. Both laboratory and field-tested standoff LIBS instruments have been used to detect explosive materials. Recent advances in instrumentation and data analysis techniques are discussed, including the use of double-pulse LIBS to reduce air entrainment in the analytical plasma and the application of advanced chemometric techniques such as partial least-squares discriminant analysis to discriminate between residues of explosives and non-explosives on various surfaces. A number of challenges associated with detection of explosives residues using LIBS have been identified, along with their possible solutions. Several groups have investigated methods for improving the sensitivity and selectivity of LIBS for detection of explosives, including the use of femtosecond-pulse lasers, supplemental enhancement of the laser-induced plasma emission, and complementary orthogonal techniques. Despite the associated challenges, researchers have demonstrated the tremendous potential of LIBS for real-time detection of explosives residues at standoff distances. Figure This review discusses the application of laser-induced breakdown spectroscopy (LIBS) to the problem of explosive residue detection. LIBS offers the capability for real-time, standoff detection of trace amounts of residue explosives on various surfaces  相似文献   

3.
We have developed a double-pulse standoff laser-induced breakdown spectroscopy (ST-LIBS) system capable of detecting a variety of hazardous materials at tens of meters. The use of a double-pulse laser improves the sensitivity and selectivity of ST-LIBS, especially for the detection of energetic materials. In addition to various metallic and plastic materials, the system has been used to detect bulk explosives RDX and Composition-B, explosive residues, biological species such as the anthrax surrogate Bacillus subtilis, and chemical warfare simulants at 20 m. We have also demonstrated the discrimination of explosive residues from various interferents on an aluminum substrate.  相似文献   

4.
Contamination of groundwater, soil, and the marine environment by explosives is a global issue. Identification, characterization and remediation are all required for a site recognized as contaminated with 2,4,6-trinitrotoluene (TNT) or hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). For each step, a method to accurately measure the contaminant level is needed. This paper reviews some of the current methods with emphasis on a single biosensor developed in our laboratory. Current regulatory methods require samples to be sent off-site to a certified laboratory resulting in time delays up to a month. A continuous flow biosensor for detection of explosives has been developed and tested for the rapid field screening of environmental samples. The detection system is based on a displacement immunoassay in which monoclonal antibodies to (TNT) and RDX are immobilized on solid substrates, allowed to bind fluorescently labeled antigens, and then exposed to explosives in aqueous samples. Explosive compounds present in the sample displace proportional amounts of the fluorescent label, which can then be measured to determine the original TNT or RDX concentration. The system can accurately detect ppb to ppt levels of explosives in groundwater or seawater samples and in extracts of contaminated soil. The biosensor has applications in environmental monitoring at remediation sites or in the location of underwater unexploded ordnance.  相似文献   

5.
Hyperspectral images of galvanized steel plates, each containing a stain of cyclotrimethylenetrinitramine (RDX), were recorded using a commercial long-wave infrared imaging spectrometer. Demonstrations of passive RDX chemical detection at areal dosages between 16 and 90 μg/cm2 were carried out over practical standoff ranges between 14 and 50 m. Anomaly and target detection algorithms were applied to the images to determine the effect of areal dosage and sensing distance on detection performance for target RDX. The anomaly detection algorithms included principal component analysis, maximum autocorrelation factors, and principal autocorrelation factors. Maximum difference factors and principal difference factors are novel multivariate edge detection techniques that were examined for their utility in detection of the RDX stains in the images. A target detection algorithm based on generalized least squares was applied to the images, as well, to see if the algorithm can identify the compound in the stains on the plates using laboratory reflection spectra of RDX, cyclotetramethylenetetranitramine (HMX), and 2,4,6-trinitrotoluene (TNT) as the target spectra. The algorithm could easily distinguish between the nitroaromatic (TNT) compound and the nitramine (RDX, HMX) compounds, and, though the distinction between RDX and HMX was less clear, the mean weighted residuals identified RDX as the stain on the plate. Improvements that can be made in this detection technique are discussed in detail. As expected, it was found that detection was best for short distances and higher areal dosages. However, the target was easily detected at all distances and areal dosages used in this study. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
The contamination of soil by nitroaromatic and nitramine explosives is widespread during the manufacture, testing and disposal of explosives and ammunitions. The analysis for the presence of trace explosive contaminants in soil becomes important in the light of their effect on the growth of different varieties of plants and crops. 2,4,6-Trinitrotoluene (TNT), cyclotrimethylene trinitramine (Research Department explosive, RDX) and cyclotetramethylene tetranitramine (high melting point explosive, HMX), other related explosive compounds and their by-products must be monitored in soil and surrounding waterways since these are mutagenic, toxic and persistent pollutants that can leach from the contaminated soil to accumulate in the food chain. In this study, a voltammetric method has been developed for the determination of explosive such as RDX, HMX and TNT. The electrochemical redox behavior of RDX, HMX and TNT was studied through cyclic voltammetry and quantitative determination was carried out by using square wave voltammetry technique. Calibration curves were drawn and were linear in the range of 63-129 ppm for RDX with a detection limit of 10 ppm, 49-182 ppm for HMX with a detection limit of 1 ppm and 38-139 ppm for TNT with a detection limit of 1 ppm. This method was applied to determine the contaminations in several soil samples that yielded a relative error of 1% in the concentrations.  相似文献   

7.
Harper RJ  Almirall JR  Furton KG 《Talanta》2005,67(2):313-327
Despite the recent surge in the publication of novel instrumental sensors for explosives detection, canines are still widely regarded as one of the most effective real-time field method of explosives detection. In the work presented, headspace analysis is performed by solid phase microextraction (SPME)/gas chromatography-mass spectrometry (GC-MS), and gas chromatography-electron capture detection (GC-ECD), and used to identify dominant explosive odor chemicals seen at room temperature. The activity of the odor chemicals detected was determined through field trials using certified law enforcement explosives detection canines. A chemical is considered an active explosive odor when a trained and certified explosives detection canine alerts to a sample containing that target chemical (with the required controls in place). A sample to which the canine does not alert may be considered an inactive odor, but it should be noted that an inactive odor might still have the potential to enhance an active odor's effect. The results presented indicate that TNT and cast explosives share a common odor signature, and the same may be said for plasticized explosives such as Composition 4 (C-4) and Detasheet. Conversely, smokeless powders may be demonstrated not to share common odors. The implications of these results on the optimal selection of canine training aids are discussed.  相似文献   

8.
9.
Luminescence-based methods for sensing and detection of explosives   总被引:1,自引:0,他引:1  
The detection of explosives and related compounds is important in both forensic and environmental applications. Luminescence-based methods have been widely used for detecting explosives and their degradation products in complex matrices. Direct detection methods utilize the inherent fluorescence of explosive molecules or the luminescence generated from chemical reactions. Direct detection methods include high-energy excitation techniques such as gamma-ray and x-ray fluorescence, detection of decomposition products by fluorescence or chemiluminescence, and detection following reduction to amines or another reaction to produce fluorescent products from the explosive. Indirect detection methods utilize the interference caused by the presence of explosive compounds with traditional processes of fluorescence and fluorescence quenching. Indirect detection methods include quenching of solution-phase, immobilized, and solid-state fluorophores, displacement of fluorophores, fluorescence immunoassay, and reactions that produce fluorescent products other than the explosive. A comprehensive review of these methods is presented.  相似文献   

10.
An aggregation enhanced emission (AEE) polyurethane named STMPU-211 containing 0.13% mole concentration of 4,4′-((1Z,3Z)-1,4-diphenylbuta-1,3-diene-1,4-diyl) dibenzaldehyde (TABDAA) in the soft segments was synthesized and proved to be sensitive to Fe3+ and nitroaromatic explosives. The fluorescence of the AEE polyurethane was reduced in the presence of Fe3+, and almost quenched when 5000?μM Fe3+ was added. Meanwhile, the fluorescence intensity of STMPU-211 solution in DMF/water mixture was decreased when explosives like 2,4,6-trinitrophenol (PA) and 3-nitro-1,2,4-triazol-5-one (NTO) were applied. Especially, the quenching coefficient KSV value of PA was 5.7?×?106?M?1, confirming that the polyurethane STMPU-211 could be a highly sensitive sensor for the detection of PA. Therefore, AEE polyurethanes with low concentration of TABDAA have promising applications in biological probe, environment monitoring and antiterrorism fields.  相似文献   

11.
Current trends in the detection of peroxide-based explosives   总被引:1,自引:0,他引:1  
The increased use of peroxide-based explosives (PBEs) in criminal and terrorist activity has created a demand for continued innovation in the detection of these agents. This review provides an update to a previous 2006 review on the detection of PBEs, with a focus in this report on luminescence and fluorescence methods, infrared and Raman spectroscopy, mass spectrometry, and electrochemical techniques. Newer developments in gas chromatography and high performance liquid chromatography methods are also discussed. One recent trend that is discussed is an emphasis on field measurements through the use of portable instruments or portable assay formats. An increase in the use of infrared spectroscopy and mass spectrometry for PBE analysis is also noted. The analysis of triacetone triperoxide has been the focus in the development of many of these methods, although hexamethylene triperoxide diamine has received increased attention in PBE detection during the last few years.  相似文献   

12.
A sensitive electrochemical sensor has been fabricated to detect ultratrace nitroaromatic explosives using ordered mesoporus carbon (OMC). OMC was synthesized and characterized by scanning electron microscopy, transmission electron microscopy and nitrogen adsorption/desorption measurements. Glassy carbon electrodes functionalized with OMC show high sensitivity of 62.7 μA cm−2 per ppb towards 2,4,6-trinitrotoluene (TNT). By comparison with other materials such as carbon nanotubes and ordered mesoporous silica, it is found that the high performance of OMC toward sensing TNT is attributed to its large specific surface area and fast electron transfer capability. As low as 0.2 ppb TNT, 1 ppb 2,4-dinitrotoluene and 1 ppb 1,3-dinitrobenzene can be detected on OMC based electrodes. This work renders new opportunities to detect ultratrace explosives for applications of environment protections and home securities against chemical warfare agents.  相似文献   

13.
A chemical sensor was developed to detect the explosive 2,4,6-trinitrotoluene (TNT) utilizing planar integrated optical waveguide (IOW) attenuated total reflection spectrometry. Submicron thick films of organically modified sol-gel polymers were deposited on the waveguide surface as the sensing layer. Sol-gels were molecularly imprinted for TNT using covalently bound template molecules linked to the matrix through 1 or 2 carbamate linkages. Upon chemical cleavage of the template and displacement of the TNT-like pendant groups from the matrix, shape-selective binding sites were created that possess a primary amine group. The amine was used to deprotonate bound TNT yielding an anionic form that absorbs visible light. Binding of TNT and subsequent conversion to the anion results in the attenuation of light propagating through the waveguide, thus creating a spectrophotometric device. Sensitivity can be achieved by taking advantage of the substantial pathlength provided by the use of single mode IOWs. The limit-of-detection to gas-phase TNT was found to be five parts-per-billion (ppbV) in ambient air at a flow rate of 40 mL min−1 given a 60 s sampling time. The sensor is highly selective for TNT due to the selectivity of binding site recognition of TNT and the subsequent generation of the TNT anion. Response to TNT is not reversible which results in an integrating sensor device which, in theory, can improve the ability to detect small amounts of the explosive if the exposure time is sufficient in length.  相似文献   

14.
Marple RL  Lacourse WR 《Talanta》2005,66(3):581-590
High-performance liquid chromatography with photo-assisted electrochemical detection (HPLC-PAED) is used in conjunction with ultraviolet absorbance (UV) detection for determining explosives in environmental samples. The system utilizes an on-line solid-phase extraction technique for sample pretreatment (i.e., fractionation and concentration), thus reducing the required ground water sample size from 1 L to 2 mL and minimizing sample handling. Limits of detection for explosives using solid-phase extraction and PAED range from 0.0007 to 0.4 μg/L, well below those achieved with UV detection for several important explosives (e.g., RDX). The method has demonstrated good accuracy, precision, and recovery for all tested explosives, thus proving that the method is suitable for evaluation of explosives in ground water with competitive advantages over the U.S. Environmental Protection Agency (EPA) Method 8330. A system adaptable for the on-site environmental analysis of explosives has been developed and validated.  相似文献   

15.
液相爆炸物荧光化学传感器研究进展   总被引:1,自引:0,他引:1  
杜海英  丁立平  房喻 《化学通报》2011,(10):881-889
溶液中爆炸物的快速灵敏检测对于防恐、反恐和环境质量监测等都具有十分重要的意义。本文在介绍液相爆炸物探测用均相荧光传感器、薄膜荧光传感器和颗粒荧光传感器的基础上,简要评述了各种方法的优缺点,指出新型化学薄膜荧光传感器的开发和基于这些薄膜的低成本、多功能和高品质液相专用爆炸物探测仪的研制将成为未来液相爆炸物探测研究的一个重...  相似文献   

16.
17.
Acts of terror and warfare threats are challenging tasks for defense agencies around the world and of growing importance to security conscious policy makers and the general public. Explosives and chemical warfare agents are two of the major concerns in this context, as illustrated by the recent Boston Marathon bombing and nerve gas attacks on civilians in the Middle East. To prevent such tragic disasters, security personnel must be able to find, identify and deactivate the threats at multiple locations and levels. This involves major technical and practical challenges, such as detection of ultra-low quantities of hazardous compounds at remote locations for anti-terror purposes and monitoring of environmental sanitation of dumped or left behind toxic substances and explosives. Surface-enhanced Raman scattering (SERS) is one of todays most interesting and rapidly developing methods for label-free ultrasensitive vibrational “fingerprinting” of a variety of molecular compounds. Performance highlights include attomolar detection of TNT and DNT explosives, a sensitivity that few, if any, other technique can compete with. Moreover, instrumentation needed for SERS analysis are becoming progressively better, smaller and cheaper, and can today be acquired for a retail price close to 10,000 US$. This contribution aims to give a comprehensive overview of SERS as a technique for detection of explosives and chemical threats. We discuss the prospects of SERS becoming a major tool for convenient in-situ threat identification and we summarize existing SERS detection methods and substrates with particular focus on ultra-sensitive real-time detection. General concepts, detection capabilities and perspectives are discussed in order to guide potential users of the technique for homeland security and anti-warfare purposes.  相似文献   

18.
Detecting trace explosive residues at standoff distances in real-time is a difficult problem. One method ideally suited for real-time standoff detection is laser-induced breakdown spectroscopy (LIBS). However, atmospheric oxygen and nitrogen contributes to the LIBS signal from the oxygen- and nitrogen-containing explosive compounds, complicating the discrimination of explosives from other organic materials. While bathing the sample in an inert gas will remove atmospheric oxygen and nitrogen interference, it cannot practically be applied for standoff LIBS. Alternatively, we have investigated the potential of double pulse LIBS to improve the discrimination of explosives by diminishing the contribution of atmospheric oxygen and nitrogen to the LIBS signal. These initial studies compare the close-contact (< 1 m) LIBS spectra of explosives using single pulse LIBS in argon with double pulse LIBS in atmosphere. We have demonstrated improved discrimination of an explosive and an organic interferent using double pulse LIBS to reduce the air entrained in the analytical plasma.  相似文献   

19.
Advances in characterization of laser induced plasmas by optical emission spectroscopy are reviewed in this article. The review is focused on the progress achieved in the determination of the physical parameters characteristic of the plasma, such as electron density, temperature and densities of atoms and ions. The experimental issues important for characterization by optical emission spectroscopy, as well as the different measurement methods are discussed. The main assumptions of the methods, namely the optical thin emission of spectral lines and the existence of local thermodynamic equilibrium in the plasma are evaluated. For dense and inhomogeneous sources of radiation such as laser induced plasmas, the characterization methods are classified in terms of the optical depth and the spatial resolution of the emission used for the measurements. The review deals firstly with optically thin spatially integrated measurements. Next, local measurements and characterization in not optically thin conditions are discussed. Two tables are included that provide reference to the works reporting measurements of electron density and temperature of laser induced plasmas generated with diverse samples.  相似文献   

20.
The development and application of ion chromatography (IC) coupled to mass spectrometry (MS) is discussed herein for the quantitative determination of low-order explosives-related ionic species in environmental and forensic sample types. Issues relating to environmental explosives contamination and the need for more confirmatory IC-MS based applications in forensic science are examined. In particular, the compatibility of a range of IC separation modes with MS detection is summarised along with the analytical challenges that have been overcome to facilitate determinations at the ng–μg L−1 level. Observed trends in coupling IC to inductively coupled plasma and electrospray ionisation mass spectrometry form a particular focus. This review also includes a discussion of the relative performance of reported IC-MS methods in comparison to orthogonal ion separation-based, spectrometric and spectroscopic approaches to confirmatory detection of low-order explosives. Finally, some promising areas for future research are highlighted and discussed with respect to potential IC-MS applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号