首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silica is a very interesting system that has been thoroughly studied in the last decades. One of the most outstanding characteristics of silica suspensions is their stability in solutions at high salt concentrations. In addition to that, measurements of direct-interaction forces between silica surfaces, obtained by different authors by means of surface force apparatus or atomic force microscope (AFM), reveal the existence of a strong repulsive interaction at short distances (below 2 nm) that decays exponentially. These results cannot be explained in terms of the classical Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory, which only considers two types of forces: the electrical double-layer repulsion and the London-van der Waals attraction. Although there is a controversy about the origin of the short-range repulsive force, the existence of a structured layer of water molecules at the silica surface is the most accepted explanation for it. The overlap of structured water layers of different surfaces leads to repulsive forces, which are known as hydration forces. This assumption is based on the very hydrophilic nature of silica. Different theories have been developed in order to reproduce the exponentially decaying behavior (as a function of the separation distance) of the hydration forces. Different mechanisms for the formation of the structured water layer around the silica surfaces are considered by each theory. By the aid of an AFM and the colloid probe technique, the interaction forces between silica surfaces have been measured directly at different pH values and salt concentrations. The results confirm the presence of the short-range repulsion at any experimental condition (even at high salt concentration). A comparison between the experimental data and theoretical fits obtained from different theories has been performed in order to elucidate the nature of this non-DLVO repulsive force.  相似文献   

2.
Evidence of hydration forces between proteins   总被引:1,自引:0,他引:1  
Proteins are fundamental molecules in biology that are also involved in a wide range of industrial and biotechnological processes. Consequently, many works in the literature have been devoted to the study of protein–protein and protein–surface interactions in aqueous solutions. The results have been usually interpreted within the frame of the classical Derjaguin–Landau–Verwey–Overbeek (DLVO) theory for colloidal systems. However, against the DLVO predictions, striking evidence of repulsive forces between proteins at high salt concentrations has been observed in different works based on the analysis of the second virial coefficient or on the direct measurement of protein interaction with an atomic force microscope. Hydration forces due to the adsorption of hydrated cations onto the negatively charged protein surfaces have been invoked to rationalize this anomalous repulsion. The hydration forces between proteins provide protein-covered particles with a non-DLVO colloidal stability at high salt concentrations, as different studies in the literature has proven. This review summarizes the most relevant results published so far on the presence of hydration forces between proteins and protein-coated colloidal particles.  相似文献   

3.
We present a newly designed electrochemical surface forces apparatus (EC-SFA) that allows control and measurement of surface potentials and interfacial electrochemical reactions with simultaneous measurement of normal interaction forces (with nN resolution), friction forces (with μN resolution), and distances (with ? resolution) between apposing surfaces. We describe three applications of the developed EC-SFA and discuss the wide-range of potential other applications. In particular, we describe measurements of (1) force-distance profiles between smooth and rough gold surfaces and apposing self-assembled monolayer-covered smooth mica surfaces; (2) the effective changing thickness of anodically growing oxide layers with ?-accuracy on rough and smooth surfaces; and (3) friction forces evolving at a metal-ceramic contact, all as a function of the applied electrochemical potential. Interaction forces between atomically smooth surfaces are well-described using DLVO theory and the Hogg-Healy-Fuerstenau approximation for electric double layer interactions between dissimilar surfaces, which unintuitively predicts the possibility of attractive double layer forces between dissimilar surfaces whose surface potentials have similar sign, and repulsive forces between surfaces whose surface potentials have opposite sign. Surface roughness of the gold electrodes leads to an additional exponentially repulsive force in the force-distance profiles that is qualitatively well described by an extended DLVO model that includes repulsive hydration and steric forces. Comparing the measured thickness of the anodic gold oxide layer and the charge consumed for generating this layer allowed the identification of its chemical structure as a hydrated Au(OH)(3) phase formed at the gold surface at high positive potentials. The EC-SFA allows, for the first time, one to look at complex long-term transient effects of dynamic processes (e.g., relaxation times), which are also reflected in friction forces while tuning electrochemical surface potentials.  相似文献   

4.
We have studied how non-DLVO forces between molecules of the globular protein apoferritin in solution affect its osmotic second virial coefficient. A model explaining the effects of the solution ionic strength and pH on the interprotein interaction is developed, to give a physical interpretation of recently published experimental findings showing that the second virial coefficient of the protein apoferritin, supported by acetate buffer, goes through a minimum as a function of ionic strength. At low ionic strengths, the apoferritin second virial coefficient initially decreases with increasing sodium ion concentration, as DLVO theory predicts. However, non-DLVO hydration forces due to overlapping of the Stern layers of the protein molecules increase the second virial coefficient with further increase of sodium ion concentration, again as found experimentally at higher ionic strengths. The non-DLVO effect arises from ionic exchange between hydrogen and sodium ions at the protein surface. An adsorption shell of hydrated sodium ions forms around the protein molecules with increasing buffer concentration.  相似文献   

5.
Spherical calcium dioleate particles ( approximately 10 mum in diameter) were used as AFM (atomic force microscope) probes to measure interaction forces of the collector colloid with calcite and fluorite surfaces. The attractive AFM force between the calcium dioleate sphere and the fluorite surface is strong and has a longer range than the DLVO (Derjaguin-Landau-Verwey-Overbeek) prediction. The AFM force between the calcium dioleate sphere and the mineral surfaces does not agree with the DLVO prediction. Consideration of non-DLVO forces, including the attractive hydrophobic force and the repulsive hydration force, was necessary to explain the experimental results. The non-DLVO interactions considered were justified by the different interfacial water structures at calcite- and fluorite-water interfaces as revealed by the numerical computation experiments with molecular dynamics simulation.  相似文献   

6.
The results and implications of direct force measurements between molecularly smooth mica surfaces in liquids are reviewed. These discussions include four interactions fundamental to colloid science: van der Waals forces, double layer forces, adhesion forces and structural or solvation forces (e.g. hydration forces). Also considered are the effects of preferential surface adsorption of solute molecules on these interactions, e.g. surfactant adsorptions from aqueous solutions and water condensation from non-aqueous solvents.In aqueous media it is apparent that the DLVO theory is valid at all surface separations down to the “force barrier”, but that under certain conditions hydration forces can become significant at distances below 30 Å.The measured adhesion force between two solid surfaces can be simply related to their surface energies and where meniscus forces are also present due to “capillary condensation” from vapor solvent, their effect on adhesion can be understood in terms of straightforward bulk thermodynamic principles. Here, too, it is concluded that structural forces cannot be ignored.Our results suggest that structural forces may either very monotonically with distance or be oscillatory with a periodicity equal to the molecular size. Their origin, nature, mode of action and importance for particle interactions will no doubt take many years to sort out.  相似文献   

7.
An anomalous colloidal stability is observed when protein-covered particles are exposed to high salt concentrations, in opposite to the classical theory (DLVO) predictions. In hydrophilic systems some other discrepancies with respect to this theory has also been described in the literature and hydration forces are invoked to rationalize these phenomena. In our case, the dependence of the anomalous behaviour with pH and electrolyte ion concentration points to the specific adsorption of cations as responsible. An extension to the DLVO theory including hydration forces and its dependence with salt concentration is proposed. From the practical point of view, this stabilization mechanism is of great interest in the development of clinical latex immunoassays, which often suffer from colloidal stability problems.  相似文献   

8.
The stabilization of antibody-latex complexes at high salt concentration is an event that cannot be explained by the widespread DLVO theory. Adsorption of antibodies on polystyrene latex usually leads to a loss in colloidal stability. However, after the expected particle aggregation induced by an increase in ionic strength, an 'anomalous' restabilization occurs when the electrolyte concentration increases even more. This non-DLVO behaviour can be explained taking into account the hydration forces, which become significant in hydrophilic surfaces. This restabilization has already been observed in different protein latex complexes. In the present work, a study on the stability patterns of polystyrene particles covered independently by mammalian and chicken antibodies has been performed. This study reveals that avian antibodies present a more hydrophobic surface than that of mammalian antibodies. In addition, it has been possible to obtain some information about the molecular orientation of the adsorbed antibodies from the stability experiments. This information has been corroborated by an immunoreactivity study.  相似文献   

9.
10.
We report the investigation of surface forces between polyelectrolyte multilayers of poly(allylamine hydrochloride) (PAH) and poly(styrenesulfonate sodium salt) (PSS) assembled on mica surfaces during film buildup using a surface force apparatus. Up to four polyelectrolyte layers were prepared on each surface ex situ, and the surface interactions were measured in 10(-4) M KBr solutions. The film thickness under high compressive loads (above 2000 microN/m) increased linearly with the number of deposited layers. In all cases, the interaction between identical surfaces at large separations (>100 A from contact) was dominated by electrostatic double-layer repulsion. By fitting DLVO theory to the experimental force curves, the apparent double-layer potential of the interacting surfaces was calculated. At shorter separations, an additional non-DLVO repulsion was present due to polyelectrolyte chains extending some distance from the surface into solution, thus generating an electrosteric type of repulsion. Forces between dissimilar multilayers (i.e., one of the multilayers terminated with PSS and the other with PAH) were attractive at large separations (30-400 A) owing to a combination of electrostatic attraction and polyelectrolyte bridging.  相似文献   

11.
The interaction between two high-grade polished fused silica plates separated by a thin layer of aqueous LiCl, NaCl and KCl solution, respectively, was determined by means of a selfdeveloped method. Concerning the repulsion created by overlap of the electrical double layers excellent agreement with the DLVO theory down to separation of about 5 nm were found. For still smaller separations a relatively strong additional repulsion arises which according to experimental evidence might be assigned to the overlap of hydration layers emanating chiefly from the alkali metal halide ions adsorbed onto the silica surfaces. Our results agree well with those obtained by Israelachvili et al. and Pashley, who used mica sheets.  相似文献   

12.
To provide better understanding of how a protein secondary structure affects protein-protein and protein-surface interactions, forces between amphiphilic alpha-helical proteins (human apolipoprotein AII) adsorbed on a hydrophilic surface (mica) were measured using an interferometric surface force apparatus (SFA). Forces between surfaces with adsorbed layers of this protein are mainly composed of electrostatic double layer forces at large surface distances and of steric repulsive forces at small distances. We suggest that the amphiphilicity of the alpha-helix structure facilitates the formation of protein multilayers next to the mica surfaces. We found that protein-surface interaction is stronger than protein-protein interaction, probably due to the high negative charge density of the mica surface and the high positive charge of the protein at our experimental conditions. Ellipsometry was used to follow the adsorption kinetics of this protein on hydrophilic silica, and we observed that the adsorption rate is not only controlled by diffusion, but rather by the protein-surface interaction. Our results for dimeric apolipoprotein AII are similar to those we have reported for the monomeric apolipoprotein CI, which has a similar secondary structure but a different peptide sequence and net charge. Therefore, the observed force curves seem to be a consequence of the particular features of the amphiphilic alpha-helices.  相似文献   

13.
Despite the success of DLVO theory, there exist numerous examples of interactions that do not follow its predictions. One prominent example is the interaction between hydrophilic surfaces in mixtures of water with another polar, associating solvent. Interactions of such surfaces are still poorly understood yet play a key role in a wide variety of processes in nature, biology, and industry. The interaction forces between a silica sphere and a glass plate in N-methyl-2-pyrrolidone (NMP)-water binary mixtures were measured using the AFM technique. The interactions in pure NMP and pure water agreed qualitatively with DLVO theory. In contrast, the addition of NMP to water drastically altered the interactions, which no longer followed DLVO predictions. An unusually strong, long-range (50-80 nm), multistepped attractive force was observed on the approach of hydrophilic surfaces in the NMP concentration range of 30-50 vol %, where the adhesive pull-off force was also maximized. The maximum attractive force was observed at an NMP concentration near 30 vol %, consistent with the formation of a strong hydrogen-bonded complex between NMP and water near the solid surface. The analysis of force profiles, zeta potentials, solution viscosity, and contact angles suggests that attraction arises from the bridging of surface-adsorbed macrocluster layers known to form on hydrophilic surfaces in mixtures of associating liquids.  相似文献   

14.
We have measured interactions between hydrophilic and hydrophobic surfaces in an aqueous medium at various pH and ionic strengths as well as in some organic solvents using atomic force microscopy and analyzed them in terms of particle adhesion and detachment from surfaces. In hydrophilic systems the forces observed were found to be well described by DLVO theory at large separation distances. Very long range hydrophobic forces were not observed in hydrophilic-hydrophobic systems. Nevertheless, the jump into contact was found to occur at distances greater that those predicted by just van der Waals attraction. The interaction between two hydrophobic surfaces was dominated by the long-range attraction due to hydrophobic forces. This interaction was found to be sensitive to the type of substrate as well as to the pH and electrolyte concentration. Measured pull-off forces showed poor reproducibility. However, average values showed clear trends and were used to estimate interfacial energies or work of adhesion for all systems studied by means of the Derjaguin approximation. These values were compared to those calculated by the surface tension component theory using the acid-base approach. Good qualitative agreement was obtained, giving support for the usefulness of this approach in estimating interfacial energies between surfaces in liquid media. A comparison of the measured adhesion force with hydrodynamic detachment experiments showed good qualitative agreement. Copyright 2001 Academic Press.  相似文献   

15.
The hydration interaction is responsible for the colloidal stability observed in protein-coated particles at high ionic strengths. The origin of this non-DLVO interaction is related not only to the local structure of the water molecules located at the surface but also to the structure of those molecules involved in the hydration of the ions that surround the colloidal particles. Ruckenstein and co-workers have recently developed a new theory based on the coupling of double-layer and hydration interactions. Its validity was contrasted by their fitting of experimental data obtained with IgG-latex particles restabilized at high salt concentration. The theory details the important role played by the counterions in the stability at high salt concentrations by proposing an ion pair reaction forming surface dipoles. These surface dipoles are responsible of repulsive interactions between two approaching surfaces. This paper checks the theory with recent data where some ions associated with the Hofmeister series (NO(3)(-), SCN(-) and Ca(2+)) restabilize the same kind of IgG-latex systems by means of hydration forces. Surprisingly, these ions induce stability acting even as co-ions, likely by modifying the water structure at the surface, but not forming surface ion pairs. Therefore, this experimental evidence would question Ruckenstein's theory based on the surface dipole formation for explaining the observed restabilization phenomena.  相似文献   

16.
Ionic strength and pH will influence the zeta potential of suspended particles, and consequently particle interactions and rheological properties as well. In this study the rheological properties and aggregation behaviour of Aerosil particles dispersed in aqueous solutions with various pH and salt concentration were studied. The potential energy was estimated by the DLVO theory and short range hydration forces and compared to the experimentally determined zeta potential. The strongest attraction between particles occurs at the isoelectric point (pH 4) and resulted in large aggregates, which gave relatively higher values of viscosity, yield stress, moduli, and shear thinning effects. The relative viscosity as a function of volume fraction was fitted to the Krieger and Dougherty model for all the suspensions. Oscillation measurements showed that the suspensions display elastic behaviour at low pH and viscous behavior at high pH. Furthermore, suspensions with high salt content had higher storage moduli. A power law dependency of storage moduli with volume fraction could be used to indicate the interaction strength between particles.  相似文献   

17.
The forces between two molecularly smooth mica surfaces were measured over a range of concentrations in aqueous Li+, Na+, K+ and Cs+ chloride solutions. Deviations from DLVO forces in the form of additional short-range repulsive “Hydration” forces were observed only above some critical bulk concentration, which was different for each electrolyte. These observations are interpreted in terms of the corresponding ion exchange properties at the mica surface. “hydration” forces apparently arise when hydrated cations adsorbed on mica are prevented from desorbing as two interacting surfaces approach. dehydration of the cations leads to a repulsive hydration force. A simple site-binding model was successfully applied to describe the charging behavior of interacting mica surfaces . By subtraction of the DLVO-regulation theory from the total measured force the net hydration force was obtained for mica surfaces apparently fully covered with adsorbed cations. The magnitude of this extra force followed the series Na+ > Li+ > K+ > Cs+ and, in each case, could be described by a double-exponential decay.  相似文献   

18.
The long-range equilibrium and viscous interaction forces between a single Candida albicans cell and a flat surface have been measured using a gradient optical trap as a force transducer and evanescent wave light scattering (EWLS) to determine the separation distance. In this technique the trapped cell is probed against the surface by moving the focal point of the optical trap, the equilibrium force is determined by the deflection of the most probable cell position from the trap center, and the viscous forces are determined from the relaxation time of the Brownian fluctuations of the cell in the trap. At low electrolyte concentrations (0.5 mM NaCl) where double layer repulsion was anticipated to be the dominant interaction, equilibrium force–distance profiles for yeast cells and similarly sized polystyrene microspheres on glass surfaces both showed good agreement with predictions of DLVO theory. Also, viscous drag profiles at larger separation distances where interaction forces were small agreed well with Stokes flow predictions. These results appear to validate the technique for use with spherical yeast cells and other bioparticles of similar size. This force measurement methodology therefore provides a complementary alternative to atomic force microscopy for direct force measurement with much greater sensitivity for studying interaction between yeast and surfaces.  相似文献   

19.
A modified set-up was applied to carry out direct measurements of the forces of molecular attraction of gold spheres and crossed quartz filaments in air within the region of distances from 10 to 100 nm. Some quantitative deviations from Lifshitz's theory for gold may be attributed to an insufficient reliability of the spectral data used in the calculations. The DLVO theory adequately describes the interaction of glass threads in KCl (10?3 ÷ 10?5 N) solutions within the region of 5 to 100 nm. At a distance smaller than 5 nm, the deviations from DLVO theory are attributable to the influence of structural forces.When the contact between crossed hydrophobized quartz threads in water is broken, the attraction forces (which exceed the molecular forces by several orders of magnitude) at a distance of up to 300 nm are detected.  相似文献   

20.
Recent experiments on restabilization of protein-covered latex colloids at high ionic strengths reported by Lopez-Leon et al.(1) revealed strong specific anion effects. The same authors also emphasized that a recent polarization model, which involves both hydration and double layer forces, can account only for some of their experimental results but are in disagreement with other experimental results. The aim of the present paper is to show that most experimental results of ref 1 can be described, more than qualitatively, when the association equilibria for all the ions (with both the acidic and basic sites of the protein) are taken into account. As the traditional Poisson-Boltzmann approach, the polarization model neglects additional interactions between ions, and ions and surfaces, not included in the "mean field" electrical potential; therefore, a complete quantitative agreement should not be expected. While many of the discrepancies between calculations and experiment occur at low ionic strengths (10(-)(4)-10(-)(2) M), in the range of validity of the traditional DLVO theory, the latter can neither explain them. It is suggested that the structural modifications of the protein configuration induced by the electrolyte are responsible for some of the disagreements between experiment and calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号