首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main goal of this paper is to review the theoretical models which can be used to describe the interactions between silica surfaces and to show that a model proposed earlier by the authors (the polarization model), which accounts concomitantly for double layer and hydration forces, can be adapted to explain recent experiments in this direction. When the water molecules near the interface were considered to have an ice-like structure, a strong coupling between the double layer and hydration forces (described by the correlation length between neighboring dipoles, lambda(m)) generates long range interactions, larger than the experimentally determined interactions between silica surfaces. Arguments are brought that a gel layer is likely to be formed on the surface of silica, which, by generating disorder in the interfacial water layers, can decrease strongly the value of lambda(m). Since the prediction of lambda(m) involves a choice for the microscopic structure of water, which is often unknown, the polarization model is also presented here as a phenomenological theory, in which lambda(m) is used as a fitting parameter. Two extreme cases are considered. In one of them, the water molecules near the interface are considered to have an ice-like structure, whereas in the other they are considered randomly distributed. In the first case, the dipole correlation length lambda(m)=14.9 Angstrom. In the second limiting case, lambda(m) can be of the order of 1 Angstrom. It is shown that, for lambda(m)=4 Angstrom, a more than qualitative agreement with the experiment could be obtained, for reasonable values of the parameters involved (e.g. surface dipole strength and density, dipole location, surface charge).  相似文献   

2.
Interaction forces between alumina surfaces were measured using an AFM-colloid probe method at different pHs. For an alpha-alumina-sapphire system at acidic pH, the force curve exhibited a well-defined repulsive barrier and an attractive minimum. At basic pH, the interactive force was repulsive at all separations with no primary minimum. Lateral force measurements under the same conditions showed that frictional forces were nearly an order of magnitude smaller at basic pH than those observed at acidic pH. This behavior was attributed to the hydration of the alumina surface. Normal and lateral force measurements with the strongly hydrated rho-alumina surfaces supported these findings.  相似文献   

3.
Interaction forces and adhesion between a silica sphere and a flat silica surface in aqueous electrolyte solutions were investigated by atomic force microscopy. The forces were measured as a function of surface separation, pH and NaCl concentration as the surfaces were approaching each other. The adhesion force was determined upon retraction with respect to pH, NaCl concentration and contact time. The magnitude of the long range repulsive force was decreasing with decreasing pH. A short range repulsive force was observed at pH = 2, but no long range repulsive forces were observed at this pH. Force measurements showed that adhesion of silica surfaces in water was obstructed by short and long range repulsive forces. Adhesion was enhanced when both the long and the short range repulsive force was mitigated. A maximum adhesion force of 7.8 mN/m was measured at pH = 12.5 when the short range force vanished and the long range repulsive force was reduced by increasing the NaCl concentration. At pH = 12.5, the work of adhesion was calculated to be 1.2 mJ/m2 according to the Derjaguin–Muller–Toporov (DMT) model. Adhesion energy was much less at pH = 2 (0.3 mJ/m2) due to persistive short range repulsion.  相似文献   

4.
Comparison of the observed and calculated values for static and dynamic frequency shifts due to lateral interactions between CO molecules adsorbed on oxides indicates that these interactions are indirect and performed through a solid. Mechanism of static interaction includes relaxation, i.e. the displacement of surface atoms due to their adsorption.
, CO, , . , .. .
  相似文献   

5.
6.
The pH dependence of the friction between a silica particle and a silica wafer was investigated using lateral force microscopy. Measurements were done in the range of 3.6 < or = pH < or = 10.6 and the effect of high loading force was also examined. It is found that the friction is independent of the pH of solutions and increases linearly with the applied load, when the pH is between 3.6 and 8.6. On the other hand, once the pH is above 9.0, the friction becomes extremely small and the dependence on the applied load becomes nonlinear. It is postulated that this transition is due to the development of a gel layer composed of polymer-like segments of silicilic acid anchored on the surface; at the lower applied load, this layer acts as a boundary lubricant between the surfaces, but, at the higher applied load, the entanglements of these segments and more direct contact between two solid surfaces leads to the increase of the friction. The effects found here are expected to play an important role in elucidating the basic mechanism of the planarization process of silica wafers.  相似文献   

7.
Infrared and uv spectroscopy have been used to study the interactions of a series of mono and di-substituted benzene molecules on both porous and nonporous high surface area silicas. It is confirmed that the strength of adsorption depends upon the presence and type of surface hydroxyl group but shown that the uv spectral shifts are not necessarily related to bond strength. Thus, when the surface OH groups reduce the effect of the electron donating side groups, stronger hydrogen bonds produce larger blue shifts in π-π* transitions. When n-π* transitions are involved, however, it is a dipole-dipole interaction which determines the magnitude of the red shift and not the strength of the hydrogen bond.  相似文献   

8.
9.
The hydration of fullerene-like silica molecules was studied by the density functional method (exchange-correlation functional B3LYP, basis set 6-31G**). It was demonstrated that completely coordinated structures transform to more stable hydroxylated ones during hydrolysis. These in turn react with H2O molecules with the formation of hydrogen bonds.  相似文献   

10.
Nanoscale repulsive forces between mineral surfaces in aqueous solutions were measured for the asymmetric mica-silica system. The force measured with an atomic force microscope (AFM) has universal character in the short range, less than ~1 nm or about 3-4 water molecules, independent of solution conditions, that is, electrolyte ion (Na, Ca, Al), concentration (10(-6)-10(-2)M), and pH (3.9-8.2). Notably, the force is essentially the same as for the glass-silica system. Single force curves for a mica-silica system in a 10(-4)M aqueous NaCl solution at pH ~ 5.1 show oscillations with a period of about 0.25 nm, roughly the diameter of a water molecule, a consequence of a layer-by-layer dehydration of the surfaces when pushed together. This result provides additional support to the idea that nanoscale repulsive forces between mineral surfaces in aqueous solutions arise from a surface-induced water effect; the water between two mineral plates that are pushed together becomes structured and increasingly anchored to the surface of the plates by the creation of a hydrogen-bonding network that prevents dehydration of the surfaces.  相似文献   

11.
《Chemical physics letters》1987,139(1):109-115
The fractal dimension, D, of the distribution of adsorbed molecules (malachite green, MG, the acceptor) is affected by morphological changes in the support, i.e. by the average pore size of silica. This was found by analysing the kinetics of one-step electronic energy transfer between adsorbed rhodamine B and MG according to the Klafter-Blumen equation.  相似文献   

12.
Block and graft copolymers are frequently used as stabilizing agents in colloidal dispersions. One common material is the range of polymers known as "Pluronics," which is a BASF trade name for ABA block copolymers composed of a propylene oxide anchoring block (B block) and two ethylene oxide buoy or stabilizing blocks (A block); the equivalent ICI (Uneqima) trade name is Synperonic. In the work presented here the interactions between adsorbed layers of these materials immersed in 10(-2) M sodium sulfate solutions are presented. The block copolymers investigated had an approximately fixed molecular weight of around 3250 Da for the anchoring B block, whilst the molecular weight of the stabilizing polyethylene oxide chains varies around 800-6500 Da. Hydrophobic glass surfaces were used as the test substrate. It was found that in the absence of polymer a long ranged attractive interaction is observed, typical for the interaction between hydrophobic surfaces in aqueous media, but that in the presence of the polymers a repulsion was observed. The repulsion became longer ranged as the molecular weight of the ethylene oxide chain increased. On separation of the surfaces, the interaction was slightly longer ranged, suggesting that the two polymer layers intertwine and stretch each other on separation. This effect was more noticeable for the higher molecular weight polymers. The compression data were well described using a scaling analysis for the interaction between polymer brushes.  相似文献   

13.
It is shown that the excitation spectrum of neutral molecules physisorbed on a dielectric surface consists of two symmetric and two antisymmetric energy modes. The spectral functions of these modes are represented respectively by two lorentzian lines whose spectral widths are described by the radiative decay of the energy modes in question. Numerical results are derived for the energies of excitation and spectral widths for the rare-gas atoms adsorbed on graphite.  相似文献   

14.
Reduced TiO2(110) surfaces usually have OH groups as a result of H2O dissociation at oxygen vacancy defects. Because of excess electrons due to OH adsorption, OH/TiO2 exhibit interesting properties favorable to further O2 or H2O adsorption. Both O2 and H2O can adsorb and easily diffuse on the OH/TiO2 surface; such behavior plays a significant role in photocatalysis, heterogeneous catalysis, electronic devices and sensors. Indeed, the processes of H2O dissociation, O2 and H2O diffusion on such TiO2 surfaces, in the presence of OH groups, are important issues in their own right. Herein, the most recent experimental and theoretical progresses in understanding the interactions between adsorbed OH groups and O2, or H2O, over TiO2(110) surfaces and their implications will be reviewed.  相似文献   

15.
The dependence of spectra on the surface coverage and data on isotope substituted CO molecules permit to reveal the resonance interaction of vibrating dipoles and the effect of induced heterogeneity, i.e. weakening of the electron-accepting properties of Zn2+ ions in the occupation of adjacent sites by adsorbed molecules.
- CO , . . Zn2+ .
  相似文献   

16.
《Chemical physics letters》1986,128(4):337-342
We use Monte Carlo simulations to examine the manner in which reagent aggregation affects the reaction rate between molecules adsorbed on a solid surface. We discuss the temperature and concentration dependence of the rate of product formation.  相似文献   

17.
The interaction energy-distance curves of fractionated and unfractionated homo- and copolymers were measured. The results were compared quantitatively with the HVO theory. It was found that only a small number of segments per tail are necessary to obtain stability. The experimental energy-distance curves for low molecular weights are described sufficiently well by the HVO theory, with exponentional distribution of tail sizes. For high molecular weights the exponential distribution cannot be considered as a reasonable assumption because the number of segments in the tails is very low.Polydisperse samples of PVA with different contents of acetate groups, and similar molecular weight, indicate an increasing extension of the adsorbed polymer layer with decreasing acetate content.  相似文献   

18.
Interaction forces between two gold surfaces with adsorbed poly(amidoamine) (PAMAM) dendrimers (generations G3.0 and G5.0) have been investigated using colloidal probe atomic force microscopy (AFM). In the absence of dendrimers or at their low concentrations, an attractive force derived from the van der Waals interaction was observed. On the other hand, this attractive interaction changed to repulsion with increasing dendrimer concentration. The origin of the repulsion can be attributed to either an electric double layer interaction or a steric effect of the adsorbed dendrimers, depending on the concentration of dendrimer. The steric hindrance was also influenced by the generation of the dendrimer; the force-detectable distance in the presence of PAMAM G5.0 dendrimer was slightly longer than that in the presence of G3.0 dendrimer. In order to estimate the occupied area of each dendrimer adsorbed on gold, quartz crystal microbalance (QCM) measurement was also carried out.  相似文献   

19.
We have investigated computationally the magnetic spin state of free metalloporphyrins and how magnetic ordering in metalloporphyrins can be induced through contact with the metallic surface and what the origin of the exchange interaction is. To this end, we performed density functional theory (DFT) and DFT + U studies for a series of isolated, ligated as well as unligated Fe-porphyrin (FeP) molecules as well as various FeP molecules on surfaces. Our calculations for isolated FePs clearly demonstrate that the usual DFT-based exchange-correlation functionals (such as the generalized gradient approximation) cannot predict the experimental high-spin ground state of these molecules. Instead, one has to resort to DFT + U calculations with a Coulomb U of about 4 eV on the Fe atoms, to obtain the correct single-molecule spin state. The magnetic interaction between FeP and a Co surface has been studied computationally with the DFT and DFT + U approaches. Our total energy DFT and DFT + U calculations predict an optimal Fe – substrate distance of 3.5 Å and a ferromagnetic exchange coupling of FeP to the substrate, in accordance with recent experiments. For Fe-porphyrin chloride (FePCl), on the other hand, an antiferromagnetic coupling is computed to be more favorable. Our study demonstrates that due to an indirect exchange interaction, which is mediated through the four nitrogen atoms, ferromagnetic ordering on the FeP is stabilized.  相似文献   

20.
The energy within a vibrationally excited physisorbed molecule often exceeds that needed to break its bond to the surface. Energy transfer from the vibrating chemical bond to the surface bond causes the surface bond to rupture and the vibrationally relaxed adsorbate is released from the surface. We present a theoretical model which allows an estimation of the residence time of a vibrationally excited adsorbate on a surface. Because of uncertainties in the nature of the surface bond, the lifetimes obtained from the analytical expressions presented have only qualitative significance. The results are interpreted in terms of Franck-Condon overlaps between the wavefunctions which describe the adsorbate-substrate complex and the released adsorbate. Lifetimes are calculated for hydrogen isotopes adsorbed on sapphire surfaces. Guide-lines are given for estimating lifetimes of other systems in terms of a few easily calculated parameters.Let us summarize this guide to spontaneous desorption of physically adsorbed vibrationally excited molecules. The most efficient desorption processes will occur for adsorbates with a small number of bound states (d0 small) and when released the adsorbate has small translational momentum (small qm). This momentum gap correlation is most succinctly revealed by fig. 3. Smaller translational momentum will be achieved if the adsorbate can take up energy into its internal motions. Absorption of energy into lattice modes of the substrate will also serve to reduce the translational momentum and provide for more efficient desorption. However, if the vibrational frequency of the adsorbate is in near resonance with surface polarons or plasmons of the substrate, energy transfer to the solid will be so efficient that desorption will be quenched.A test of these possible relaxation channels awaits the first experimental measurements of desorption of vibrationally excited molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号