共查询到20条相似文献,搜索用时 0 毫秒
1.
用改进的截断与转换的矩阵奇异值分解算法,设计实现了基于字频特征的中文文本分类器.理论分析与实验结果表明,采用的方法提高了数值计算精度,降低了文本集特征空间的维数,简化了文本分类算法的时间复杂度,提高了文本分类准确率. 相似文献
2.
长短期记忆网络(LSTM)在序列建模中存在梯度消失的情况,其降低了模型在时序预测任务尤其是中长期多步预测中的精度,同时降低了模型对于序列上下文中关键信息的注意力.梯度消失的根本原因在于LSTM的门控记忆机制对在循环层反向传播的梯度失去控制,故考虑对循环层的门控单元结构进行调整,并专门对于含有特定成分(如季节成分)的序列进行训练使改进后LSTM模型在序列预测任务中具备针对季节性成分的注意力.文章研究在LSTM模型的基础上采用将已有的单支路的遗忘门调整为具有双支路的季节门,并引入输入序列的极差作为划分支路的选通器的方法,改进得到季节型LSTM (S-SLTM).经实验,在英文电影评论IMDB的文本二分类情感分析中,单层的S-LSTM较单层LSTM的预测准确率提升了9.8%. 相似文献
3.
为了针对互联网上的新闻类文档实现对其快速精准地分类,提出一种根据词频先初步降维再进行优化建模的分类思路.先基于高频词汇初步降维,再对降维后的数据以模型AUC值达到最大为目标,采取向后消元的方法构建随机森林分类模型,实现对文档的分类.通过实证分析,发现该方法能够有效地实现对文本的分类,同时减少了建模的运算量,通过AUC值的优化,比单纯依据词频降维构建的随机森林模型分类效果更好. 相似文献
4.
本文讨论了中文文本挖掘的三个问题:分词、关键词提取和文本分类。对分词问题,介绍了基于层叠隐马尔可夫模型的ICTCLAS分词法,以及将词与词之间的分隔视为缺失数据并用EM算法求解的WDM方法;对关键词提取问题,提出了贝叶斯因子法,并介绍了使用稀疏回归的CCS方法;对文本分类问题,介绍了根据关键词频率建立分类器的方法,以及先建立主题模型再根据主题概率建立分类器的方法。本文通过两组文本数据对上述方法进行比较,并给出使用建议。 相似文献
5.
主要研究不同的分词模式对文本分类结果的影响,采用两种传统的文本表示方法:LDA和LSA,采用两种分类方法:支持向量机和逻辑回归,一共四组不同的实验来比较分析.实验结果表明相对于传统的分词方法来说,第二种搜索引擎式的分词方法通过拆分、添加组合词对分类结果更有效.具体来说,对两种分词采用LDA得到文本表示后,模式二的分类准确率最高95.38%,模式一为93.7%.在对两种分词采用LSA得到文本表示后,模式二的分类准确率最高为96.44%,模式一最高为95.2%. 相似文献
6.
提出了基于经验模式分解(EMD)和隐马尔科夫模型(HMM)的故障诊断模型,为通过设备状态监测数据分析进行基于状态维修和维修决策提供了一种新途径.为了消除EMD的端点效应,使用神经网络拟合延拓原始数据序列端点极值,并通过定义序列复杂度来定性地确定延拓极点数.进一步,采用分解所得的固有模态(IMF)能谱熵作为HMM分类系统的输入,得到一种设备故障诊断方案.通过数值仿真和发动机故障诊断验证了该方法的有效性. 相似文献
7.
陈勇刚孙向东崔丽娟胡林 《数学的实践与认识》2021,(9):99-107
为充分挖掘利用航空公司机队维修记录,进行机队设备故障诊断和定位,提出了一种基于关联规则挖掘的航空公司机队设备故障诊断方法.在综合研究Apriori算法和FP-Growth算法原理的基础上,结合收集到的航空公司波音737NG机队维修记录,采用4.0.0版本的R语言编程软件编程实现了上述两种关联规则挖掘算法.为证明Apri... 相似文献
8.
主要研究垃圾文本识别问题,利用苹果手机评论文本特征向量建立了SVM分类模型对垃圾文本进行识别,并与BP神经网络判别模型结果进行对比,得出苹果手机前400组训练样本的判别正确率为71%,后196组测试样本的判别正确率为70.12%.故得到,影响垃圾观点文本识别效果的主要原因为:1)评论文本的特征项的提取和文本特征空间向量求解.2)判别分类方法的选择,其中SVM文本识别效果最优. 相似文献
9.
建立未确知RBF神经网络.特点是:综合了未确知系统与神经网络的优点,充分利用已知样本所提供的先验信息,给出了期望输出隶属度的计算方法,网络输出合理且具有良好的可解释性.将未确知RBF神经网络应用于故障诊断领域,取得了很好的效果. 相似文献
10.
近两年来,Google团队提出的BERT模型被越来越多地应用于文本分类任务中.在BERT模型的基础上,文章提出了一个基于新闻文本挖掘的股指期货高频预测模型,进而设计了相应的高频交易策略.文章基于股指期货的高频价格波动为每条新闻赋予涨跌平标签,利用所提出模型对新闻进行分类,从而预测三大股指期货价格的涨跌平方向,并完成股指期货模拟高频交易.基于5年半以来的三大股指期货的高频数据及证券新闻文本的实证研究显示,文章提出的预测模型和交易策略取得了较高的准确率和收益率,且在中证500股指期货上表现最好. 相似文献
11.
基于可能性理论的设备故障诊断 总被引:3,自引:0,他引:3
基于L.A.Dadeh的可能性理论,本文提出了一种设备故障的模糊诊断方法,将其应用于机车发动机的磨损状态识别,可以取得良好的诊断效果 相似文献
12.
13.
基于主题模型的半监督网络文本情感分类研究 总被引:1,自引:0,他引:1
针对网络评论文本的情感分类问题中存在的数据的不平衡性、无标记性和不规范性问题,提出一种基于主题的闽值调整的半监督学习模型,通过从非结构化文本中提取主题特征,对少量标注情感的文本训练分类器并优化指标调整闽值,达到识别用户评论的情感倾向的目的。仿真研究证明阈值调整的半监督模型对数据非平衡性和无标记性具有较强的适应能力。在实证研究中,对酒店评论文本数据构建的文本情感分类器显示该模型可以有效预测少数类评论样本的情感极性,证实了基于主题模型的闽值调整半监督网络评论文本情感分类模型在实际问题中的适用性与可行性。 相似文献
14.
王海军 《数学的实践与认识》2017,(2):142-147
遥感影像分类作为遥感技术的一个重要应用,对遥感技术的发展具有重要作用.针对遥感影像数据特点,在目前的非线性研究方法中主要用到的是BP神经网络模型.但是BP神经网络模型存在对初始权阈值敏感、易陷入局部极小值和收敛速度慢的问题.因此,为了提高模型遥感影像分类精度,提出采用MEA-BP模型进行遥感影像数据分类.首先采用思维进化算法代替BP神经网络算法进行初始寻优,再用改进BP算法对优化的网络模型权阈值进一步精确优化,随后建立基于思维进化算法的BP神经网络分类模型,并将其应用到遥感影像数据分类研究中.仿真结果表明,新模型有效提高了遥感影像分类准确性,为遥感影像分类提出了一种新的方法,具有广泛研究价值. 相似文献
15.
16.
17.
18.
为了克服目前地下水动态分类方法中存在的不能揭示分类指标空间到类型空间的非线性映射关系、方法复杂、计算量大等缺陷,可采用基于非线性变换的主成分投影(PCP)-聚类(C)模型,对地下水动态进行分类.方法首先对分类指标数据进行对数中心化变换,然后应用主成分投影法将变换后的多维指标向量映射到最优一维向量空间,并根据各样本指标在一维向量空间的投影值进行聚类分析,由此得到地下水动态分类结果.地下水动态分类结果表明,建议方法概念清晰,结构简单,计算简便,分类结果可信,是一种有效的地下水动态分类方法. 相似文献
19.
Volterra级数在非线性网络分析及故障诊断中的应用 总被引:3,自引:0,他引:3
本用Volterra级数求解描述非线性网络性状的非线性微分方程,得出了网络响应的Volterra递推算法和分析步骤及其在故障诊断中的应用。 相似文献
20.
油气田开发中有效储层和非有效储层的样本点存在混合带时,两类储层的划分是一个难点问题.从统计学上来看,其本质是一个含噪声的小样本二分类问题,可以采用机器学习方法,充分挖掘有试油成果的样本点的数据信息.分别利用线性判别分析、支持向量机、多层感知机神经网络建立储层分类模型,利用10次10折交叉验证法进行模型评估与优选,并利用全部样本点建立了有效的储层分类模型,最后将模型推广应用到样本分布的三种不同情形.结果表明,线性支持向量机模型具有最好的分类效果和很强的泛化能力,对于区分有效储层和非有效储层是有效的,可以在油气田开发中进行推广. 相似文献