首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
重叠三维荧光光谱的解析是荧光光谱解析中的难点,非负矩阵分解(NMF)作为一种有效的盲分离方法,能够提取光谱的局部特征和内在联系,克服光谱严重重叠带来的干扰,在解析重叠光谱中具有不可比拟的优势。首先用模拟三维荧光光谱验证了NMF在三维荧光光谱解析中的有效性,然后将四种不同的NMF算法(乘性迭代算法、交替最小二乘算法、二阶方法、投影梯度算法)用于实测的酚类化合物(百里酚、间甲酚、苯酚)三维荧光光谱的解析中,并讨论了在酚类化合物分离应用中四种NMF算法的收敛速度和计算复杂度的差异。实验结果表明,四种方式的NMF标准偏差均在0.06%以下,其中交替最小二乘算法在收敛行为和鲁棒性上最为优越。  相似文献   

2.
为了得到改进的优化解,提出一种基于丰度和端元约束下非负矩阵分解的解混方法.首先,基于丰度矩阵稀疏性特点,将重加权稀疏正则化引入到非负矩阵分解模型中,其中权重根据丰度矩阵自适应更新.其次,根据同一地物在相邻像素中分布的相似性先验,进一步将全变差正则化引入到非负矩阵分解模型中,以改进其丰度平滑性.最后,通过一个马尔可夫随机...  相似文献   

3.
实现半色调印刷品原稿的光谱复制技术其前提要确定原稿所用油墨数目及油墨成份,但目前应用于印刷品原稿原色油墨光谱预测的算法还有待研究,且已有的基色色料光谱预测方法存在诸多弊端。针对这一问题在非负矩阵分解算法基础上结合印刷品原稿光学特性,创新的提出了一种基于约束条件非负矩阵分解的油墨光谱预测算法ISPNMF,和对黑色油墨光谱预测结果优化的算法。ISPNMF算法克服了基本非负矩阵分解有多重最优解和局部极小值的缺陷,实现了预测算法唯一的全局最优解。黑色油墨预测光谱优化的算法克服了彩色油墨对光线混合吸收给黑色油墨预测带来的干扰,能优化得到逼近于实际黑色油墨光谱的预测值。使用Konica Minolta C1085和HP indigo5600两台四色数码印刷机及其自身配备的墨粉和墨膏来摸拟不同品牌的油墨,在230 g白卡纸上打印 IT8.7/3色标,并使用X-rite i1 Pro2获取两样张的光谱反射率作为实验数据样本,来探究并验证算法的准确性和实用性。实验结果表明,在印刷品原稿线性经验空间中能准确预测原稿所用原色油墨数目和油墨光谱,且彩色油墨预测光谱与实际使用的油墨光谱相比其拟合度均高达99.9%,光谱角距离均小于0.045,黑色油墨的预测光谱经优化后与实际油墨光谱拟合度也高达99.9%。这说明该算法不仅能实现对印刷品原稿原色油墨的准确预测,而且可以精确匹配实际使用的原色油墨,对实现印刷品原稿的光谱复制技术有重要意义。  相似文献   

4.
在中国科学院声学所大气次声波观察网实地采集的,爆炸、地震、闪电、再入四类次声事件105组阵列数据集的基础上,提出应用非负矩阵分解的特征提取方法,对次声信号的计算机自动分类方法进行了研究。针对特征设计过程复杂的问题,本方法使用非负矩阵分解自动挖掘目标信号的隐含结构作为特征。将此特征作为支持向量机和卷积神经网络输入进行分类,以提高特征设计的效率与分类的识别准确率。研究结果指出,在测试集上的平均识别准确率达到了83.13%, 相对于传统方法,简化了特征设计过程,并取得更好的分类结果。  相似文献   

5.
由于受到高光谱遥感图像传感器平台的限制,图像的空间分辨率受到一定影响,这导致高光谱遥感图像的像元通常是多种地物的混合, 也叫做混合像元。混合像元的存在制约了高光谱遥感图像的准确分析和应用领域。采用高光谱解混技术可将混合像元分解为纯净的物质光谱(Endmember, 端元)和每种物质光谱所对应的混合比例(Abundance, 丰度),为获取更多更精细的光谱提供了可能。这对高精度的地物分类识别、目标检测和定量遥感分析等研究领域具有重要的意义。因此,解混技术成为高光谱遥感图像领域的一个研究热点。基于线性光谱混合模型(linear spectral mixing model, LMM),提出了一种端元丰度联合稀疏约束的图正则化非负矩阵分解(endmember and abundance sparse constrained graph regularized nonnegative matrix factorization, EAGLNMF)算法。该算法通过研究基于非负矩阵分解(nonnegative matrix factorization, NMF)的方法,结合图正则化理论来考虑高光谱数据内部的几何结构,将端元光谱稀疏约束和丰度稀疏约束应用于其中,从而能够对高光谱数据的内部流形结构进行更为有效的表达。首先,构造了EAGLNMF算法的损失函数,采用VCA-FCLS方法进行初始化,然后,设定相关参数,包括图正则化权重矩阵参数、端元光谱稀疏约束因子和丰度矩阵稀疏约束因子,最后,通过推导得到了端元矩阵与丰度矩阵的迭代公式,并且设置了迭代停止条件。该方法不受图像中是否有纯像元的限制。实际上,在现行高光谱遥感传感器平台情况下,高光谱遥感图像中几乎不存在纯像元,因此,EAGLNMF方法为高光谱遥感图像的实际应用提供了一种思路。采用合成的高光谱数据,构造了4个实验来分析该方法的可行性和有效性,实验将该算法与VCA-FCLS,标准NMF及GLNMF等经典的解混算法进行比较,通过光谱角距离(spectral angle distance, SAD)和丰度角距离(abundance angle distance, AAD)这两个度量标准来进行比较。实验1是总体分析实验。在固定的信噪比和固定端元数目的情况下,用以上三种经典方法与EAGLNMF同时进行解混。实验2是SNR影响分析实验。在固定端元数目和不同信噪比的情况下,用这四种方法进行解混。实验3端元数目分析实验。在固定信噪比和不同端元数目的情况下,用四种方法进行解混,并且将结果进行对比。实验结果发现提出的EAGLNMF方法在提取端元精度和估计丰度精度上都更为准确。同时,实验4是稀疏因子分析实验。对端元稀疏约束和丰度稀疏约束之间的影响因子进行分析,实验结果表明引入的端元稀疏约束对于解混结果也具有较好的影响,并且端元稀疏约束和丰度稀疏约束之间的影响因子也对解混结果具有一定影响。最后,将该算法应用于AVIRIS所采集的真实高光谱图像数据,将其解混结果与美国地质勘探局光谱库中光谱进行匹配对比,其提取的平均端元精度相比于其他三种方法要稍好。  相似文献   

6.
提出一种海洋溢油近红外光谱特征提取与种类鉴别新方法.海面溢油种类鉴别对现场应急处置方案的制定和可疑溢油源的追踪具有重要意义.采用傅里叶变换近红外光谱仪测定汽油、柴油、煤油三类模拟海洋溢油样本的近红外光谱,基于稀疏非负矩阵分解算法对光谱进行特征提取,采用五重交义检验,对210个样本进行训练,建立基于支持向量机的溢油光谱定...  相似文献   

7.
针对直接在光谱反射率空间,对原稿颜色样本光谱的主成分分析会导致特征向量的数目超过真实物理维度(原稿所用基色色料)的数量,以及特征向量和对应系数存在负值,不能直接表示原稿基色色料的光谱特性和对应浓度等情况。创新性的提出需根据原稿色料的光学特性建立一个完全线性的光谱空间,并在该空间中使用带约束条件的非负矩阵分解实现对原稿基色数量和光谱形状进行预测的方法。对此,首先设计了一个实现对原稿基色色料光谱预测方法的总体研究方案和实现步骤,再以透明色料原稿为例,研究如何选择和构建一个符合其光学特性的光谱线性空间,然后再在基本非负矩阵分解(BNMF)基础上提出针对基色色料光谱预测的有约束非负矩阵分解算法(SCNMF)。针对BNMF算法会出现多重最优解,为了提高预测精度,使矩阵分解结果有明确的物理意义,所提出的SCNMF算法需要满足4个约束条件:非负性约束;全加性约束;平滑性约束;稀疏性约束。建立了满足约束条件的目标函数和迭代算法。预测结果表明本文提出的新方法能有效的实现对原稿基色物理维度和基色色料光谱的准确预测。  相似文献   

8.
基于非负矩阵分解和广义判别分析的掌纹识别   总被引:3,自引:0,他引:3  
非负矩阵分解(NMF)具有非负性和局部性的特点,是一种新型的特征提取方法.由于NMF是非监督学习算法,运用NMF提取掌纹特征时没有考虑训练样本的类别信息,因而分类效果不够理想.为了在提取掌纹特征的同时融人类别信息,提出运用非负矩阵分解和广义判别分析(GDA)相结合的方法进行掌纹识别.为了降低计算的复杂性,在特征提取之前,应用小波变换对掌纹图像进行三级分解,提取低频子图像.在低频子图像上应用NMF+GDA提取掌纹特征,计算特征向量间的余弦距离进行掌纹匹配.运用PolyU掌纹图像库进行测试.结果表明,与主元分析(PCA)、独立元分析(ICA)和NMF相比,算法的等误率(EER)最低为0.16%,特征提取和匹配总时间为0.812 s,满足实时系统的要求.  相似文献   

9.
针对传统偏振图像伪彩色融合方法存在的不足,提出了一种基于非负矩阵分解和IHS(Intensity Hue Saturation)颜色模型的图像融合方法.首先将偏振信息解析得到的各偏振参量图像作为原始数据集进行非负矩阵分解,得到三幅特征基图像,这些特征基图像包含了场景的大部分偏振信息;然后将三幅特征基图像经直方图匹配之后,分别映射到IHS颜色模型的三个颜色通道,最后变换到RGB颜色空间,得到融合后的图像.实验结果表明,该方法不仅具有较好的色彩表达能力,而且有效地突出了目标的细节信息,提高了图像的可判读性.  相似文献   

10.
基于非负矩阵分解的多聚焦图像融合研究   总被引:12,自引:1,他引:11  
苗启广  王宝树 《光学学报》2005,25(6):55-759
在标准非负矩阵分解约束条件的基础上,提出了一种添加了清晰度约束的新的目标函数和迭代算法.即改进的非负矩阵分解算法,并将其应用于多聚焦图像融合中。非负矩阵分解过程中,适当地选取特征空间的维数能够获得原始数据的局部特征。若以待融合图像为原始数据,选取特征空间的维数为1,则利用改进的非负矩阵分解方法进行图像融合所得到的特征基图像就是对原始图像的融合,该融合网像包含了原始图像的整体特征。实验结果表明,该方法融合效果优于小波变换方法和拉普拉斯塔型方法。  相似文献   

11.
近年来许多方法被提出以实现透过散射介质的聚焦和成像,然而,在非入侵且无波前整形技术的情况下,透过散射介质的目标光谱重建仍极具挑战.提出了一种非侵入式散射介质内多光谱重建的新方法.该方法通过非侵入式的探测手段,利用随机散斑照明隐藏目标,成像光谱仪记录目标的光谱信息和空间信息,并结合非负矩阵分解算法对目标混叠谱进行解析,从...  相似文献   

12.
周浦城  韩裕生  薛模根  王峰  张磊 《光子学报》2014,39(9):1682-1687
针对传统偏振图像伪彩色融合方法存在的不足,提出了一种基于非负矩阵分解和IHS(Intensity Hue Saturation)颜色模型的图像融合方法.首先将偏振信息解析得到的各偏振参量图像作为原始数据集进行非负矩阵分解,得到三幅特征基图像,这些特征基图像包含了场景的大部分偏振信息|然后将三幅特征基图像经直方图匹配之后,分别映射到IHS颜色模型的三个颜色通道,最后变换到RGB颜色空间,得到融合后的图像.实验结果表明,该方法不仅具有较好的色彩表达能力,而且有效地突出了目标的细节信息,提高了图像的可判读性.  相似文献   

13.
针对基于多光谱数据有限光谱信息重建地表反射率光谱的病态求解难题,提出一种基于冠层辐射传输物理机理并充分考虑像元异质性的地表反射率光谱重建方法,该方法假设混合像元由植被和土壤两种地物类型组成,利用冠层辐射传输模型构造端元光谱查找表,进而通过组分比例因子估算实现基于多光谱图像的高光谱地表反射率模拟。以Landsat ETM+多光谱图像为例的地表反射率超光谱重建验证实验结果表明,模拟的反射率光谱能够较好的反映不同地物特征信息。进一步地,利用模拟的地表反射率拟合Landsat ETM+图像和MODIS图像,各波段模拟图像与实际观测图像之间具有较高的相关系数(Landsat: 0.90~0.99, MODIS: 0.74~0.85),进一步验证了该方法的可行性。  相似文献   

14.
章雯  张君  王璐  赵静  鲍明  许耀华 《声学学报》2023,48(1):249-263
针对复杂环境下多通道声信号分离问题,提出稀疏正交联合约束多通道非负矩阵分解声信号分离方法。首先设计基于多通道扩展坂仓斋藤(Itakura-Saito,IS)散度的稀疏正交联合约束项构造代价函数,给出信号稀疏和信号正交约束辅助函数,实现代价函数最小化求解。然后通过迭代更新规则设计,得到稀疏正交优化的多通道非负矩阵分解基矩阵和系数矩阵,讨论了稀疏正交约束对基矩阵和系数矩阵稀疏性与连续性影响。最后基于多通道信号空间特性,进行了非负矩阵分解基聚类以获得多通道非负矩阵分解声信号的分离结果。双通道音频数据与四通道声学目标分离实验数据测试表明,对音频数据,所提算法在性能指标信号失真比(SDR)上提高了0.84dB,对于直升机声源数据,所提算法在SDR上提高了4.53dB。  相似文献   

15.
为实现噪声情况下的人声分离,提出了一种采用稀疏非负矩阵分解与深度吸引子网络的单通道人声分离算法。首先,通过训练得到人声与噪声的字典矩阵,将其作为先验信息从带噪混合语音中分离出人声与噪声的系数矩阵;然后,根据人声系数矩阵中不同的声源成分在嵌入空间中的相似性不同,使用深度吸引子网络将其分离为各声源语音的系数矩阵;最后,使用分离得到的各语音系数矩阵与人声的字典矩阵重构干净的分离语音。在不同噪声情况下的实验结果表明,本文算法能够在抑制背景噪声的同时提高分离语音的整体质量,优于结合声噪人声分离模型的对比算法。   相似文献   

16.
为了从带噪信号中得到纯净的语音信号,提出了一种采用性别相关模型的单通道语音增强算法。具体而言,在训练阶段,分别训练了与性别相关的深度神经网络-非负矩阵分解模型用于估计非负矩阵分解中的权重参数;在测试阶段,提出了一种基于非负矩阵分解和组稀疏惩罚的算法用于判断测试语音中说话人的性别信息,然后再采用对应的模型估计权重,并结合已训练好的字典进行语音增强。实验结果表明所提算法在噪声抑制量及语音质量上,均优于一些基于非负矩阵分解的算法和基于深度神经网络的算法。  相似文献   

17.
路成  田猛  周健  王华彬  陶亮 《声学学报》2017,42(3):377-384
为了刻画语音信号帧间相关性和使用更少的语音基表示语音特征,提出一种采用L1/2稀疏约束的卷积非负矩阵分解方法进行单通道语音增强。首先,进行噪声学习得到噪声基;然后,以噪声基为先验信息结合L1/2稀疏约束卷积非负矩阵分解方法学习含噪语音中的语音基成分;最后,利用学习到的语音基和系数重建出干净语音信号。在不同噪声环境下进行的实验结果表明,本文方法优于采用L1稀疏约束的卷积非负矩阵方法及传统的统计语音增强方法。   相似文献   

18.
对760nm附近的氧气吸收带,选用植被、枯萎植被、人工地物、沙地和雪地五种典型地表类型,基于模拟数据进行非同步替代光谱定标方法的误差分析,比较不同地表类型得到的光谱定标准确度,为高光谱成像仪的非同步替代光谱定标提供定标图像选择策略.结果表明:运用两种光谱匹配方法——光谱角度匹配和欧氏距离法得到的定标误差基本一致;730~800nm的地表反射率曲线标准差在0.05nm以内时,定标误差集中在±0.5nm范围内;人工地物类型中个别地物如橄榄绿光泽涂料和植被大面积覆盖的图像数据不适合用于非同步替代光谱定标.  相似文献   

19.
基于多光谱成像的光谱反射率重建   总被引:11,自引:0,他引:11  
一些对颜色重现要求较高的应用领域需要获取目标表面上各点的光谱反射率。大多数天然物质表面的光谱反射率曲线比较平滑,可视为几个基向量的线性组合。基于这一原理的多光谱成像技术可以准确快速地重建目标表面的光谱反射率。通过对NCS色卡进行主成分分析,得出了彩色印刷品光谱反射率的基向量。建立了一个多光谱成像系统,用以比较基向量个数不同对反射率重建效果的影响。  相似文献   

20.
基于彩色数字相机的光谱反射率重建方法研究   总被引:1,自引:0,他引:1  
如何在给定照明条件和观测条件的情况下,由彩色数字相机的响应值重建物体表面光谱反射率,仍是颜色科学与工程领域一个尚待解决的重要课题。文章使用奇异值分解的方法将光谱反射率近似为若干基向量的线性组合,求得组合系数,然后使用相机输出数据与组合系数训练人工神经网络,使之能够准确的模拟相机输出与组合系数之间的非线性关系,最后采用经训练的神经网络,与基向量结合,由相机输出准确的重建物体表面的光谱反射率。实验结果显示,与线性近似的方法相比,使用该方法对标准Munsell色块进行反射率重建,重建误差减小了约67%,具有高精度、易实现、易操作的特点,可用于对重建精度要求较高的诸多领域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号