首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
本文以本文通过高温固相反应合成了Nasicon型的Li_3Fe_2(PO_4)_3电极材料。XRD结果显示850℃烧结得到的Li_3Fe_2(PO_4)_3结晶性最好。为了优化Li_3Fe_2(PO_4)_3电极的性能,使用行星球磨将制备得到的Li_3Fe_2(PO_4)_3与乙炔炭黑混合均匀,得到了Li_3Fe_2(PO_4)_3/C复合正极材料。扫描电镜照片显示,球磨后活性材料的颗粒尺寸明显减小,而且更加均匀。对于Fe~(3 )/Fe~(2 )的氧化还原电对,恒电流充放电测试和伏安循环法揭示Li_3Fe_2(PO_4)_3/C复合正极材料再放电过程中在2.8和2.7V具有两个电压平台。样品球磨后,与800℃和900℃烧结得到的Li_3Fe_2(PO_4)_3相比,850℃烧结得到的材料具有更好的可逆性和更高的容量保持性,而且它的比容量在初始循环以C/20的倍率放电可以达到92 mAhg~(-1)以及在结束时的循环以C/10的倍率放电还具有62 mAhg~(-1)。  相似文献   

2.
采用溶胶-凝胶法用SO~(2-)_4部分代替Li_3Fe_2(PO_4)_3中的PO~(3-)_4阴离子制得Li_(3-x)Fe_2(PO4)_(3-x)(SO_4)_x(x=0~0.90)正极材料,通过X射线衍射、充放电技术、循环伏安特性测试及电化学阻抗谱表征了掺杂材料的相组成及电化学性能.结果表明,SO~(2-)_4主要以固溶形式存在于Li_3Fe_2(PO_4)_3中,产物中还伴有少量Fe_2O_3第二相析出.SO~(2-)_4掺杂使Li_3Fe_2(PO_4)_3的放电容量呈抛物线形规律变化,并在掺杂浓度x=0.60时达到最佳值,该样品在0.5C倍率下的首次放电容量为111.59 mA·h/g,比未掺杂的样品提高了18.4%;60次循环充放电后的容量保持率为96%;将该样品的放电倍率由0.5C逐渐提高至5C,再降至0.5C,并在每个倍率下循环10次,材料的最终放电容量仍能达到首次放电容量的97%.导致这些变化的原因是SO~(2-)_4掺杂使材料的氧化还原性能增强,电池内阻减小,极化程度降低及Li~+扩散系数增大.  相似文献   

3.
本文以本文通过高温固相反应合成了Nasicon型的Li3Fe2(PO4)3电极材料。XRD结果显示850℃烧结得到的Li3Fe2(PO4)3结晶性最好。为了优化Li3Fe2(PO4)3电极的性能,使用行星球磨将制备得到的Li3Fe2(PO4)3与乙炔炭黑混合均匀,得到了Li3Fe2(PO4)3/C复合正极材料。扫描电镜照片显示,球磨后活性材料的颗粒尺寸明显减小,而且更加均匀。对于Fe^3+/Fe^2+的氧化还原电对,恒电流充放电测试和伏安循环法揭示Li3Fe2(PO4)3/C复合正极材料再放电过程中在2.8和2.7V具有两个电压平台。样品球磨后,与800℃和900℃烧结得到的Li3Fe2(PO4)3相比,850℃烧结得到的材料具有更好的可逆性和更高的容量保持性,而且它的比容量在初始循环以C/20的倍率放电可以达到92mAhg^-1以及在结束时的循环以C/10的倍率放电还具有62mAhg^-1。  相似文献   

4.
谢勇  钟贵明  龚正良  杨勇 《电化学》2015,21(2):123-129
采用溶胶凝胶及高能球磨制得Li3Fe2(PO4)3/C材料,利用多种物理及其电化学技术观察材料形貌,表征材料结构及电化学性能,用电化学原位XAFS等初步研究Li3Fe2(PO4)3/C超理论容量电化学反应机理. 结果显示,Li3Fe2(PO4)3/C的结构为单斜晶系,空间群P21/n. 2.0 ~ 4.0 V电位区间,10 mAh·g-1电流密度,Li3Fe2(PO4)3/C电极的首周期放电比容量为129 mAh·g-1,达到其理论容量. 若电位区间拓宽至2.0 ~ 4.95 V,其首周期放电比容量高达165 mAh·g-1,超出理论的“额外”容量30%. 电化学原位XAFS测试未观察到明显的Fe3+/Fe4+氧化还原对参与电化学反应,初步推测“额外”容量可能来自于该复合材料的高浓度表面缺陷.  相似文献   

5.
Li3PO4包覆LiMn2O4正极材料的结构表征和电化学性能   总被引:1,自引:0,他引:1  
李敏  李荣华  王文继 《化学研究》2007,18(4):98-101
采用共沉淀法在尖晶石LiMn2O4颗粒表面包覆Li3PO4.XRD、SEM研究结果表明,包覆后的材料仍为尖晶石结构,粒径均匀.电化学性能测试表明,Li3PO4包覆层的存在,减少了正极材料与电解液的直接接触,抑制了高温下电解液对LiMn2O4材料的侵蚀,从而有效改善了高温下材料的循环性能.在40℃时,包覆样品的比容量衰减率都低于未包覆样品,其中包覆1%Li3PO4的样品的初始比容量为110.4mAh/g,50次循环后比容量为84.1mAh/g.  相似文献   

6.
采用溶胶凝胶/碳热还原法合成了锂离子电池正极材料Li3V2(PO4)3及其掺Ti化合物Li3-2x(V1-xTix)2-(PO4)3. 电化学测试结果表明, 经Ti4+离子掺杂后材料的充放电性能及循环性能明显提高. 与纯相Li3V2(PO4)3在3.58、3.67和4.08 V出现三个平台相比, 掺杂后材料的前两个平台发生简并且平台趋于模糊的倾斜状态. 这种趋势随掺杂量的增大而增强. 差热分析(DTA)表明掺杂生成了稳定的酌相产物. 采用X射线衍射和Rietveld方法表征了化合物的晶体结构, 结果表明, 三个不同位置Li的不完全占据导致晶体中产生阳离子空穴, 使材料在常温下的离子电导率提高了3个数量级. 锂离子混排提高了样品的电导率和充放电比容量.  相似文献   

7.
以柠檬酸为螯合剂和还原剂, NH4VO3为钒源,通过溶胶-凝胶法制备了锂离子电池正极材料Li3V2(PO4)3及其三元掺杂体系Li2.85Na0.15V1.9Al0.1(PO4)2.9F0.1.分别采用X射线衍射(XRD)、高分辨透射电子显微镜(HRTEM)、能量损失谱(EELS)、拉曼(Raman)光谱、扫描电子显微镜(SEM)、X射线能谱(EDS)、恒流充放电、循环伏安(CV)和交流阻抗谱(EIS)等技术对材料的微观结构、颗粒形貌和电化学性能进行分析.结果表明:在残余碳包覆的基础上, Na、Al、F三元掺杂有利于稳定Li3V2(PO4)3的晶体结构,进一步减少颗粒团聚和提升材料导电特性,促进第三个锂离子的脱出和嵌入,从而显著改善Li3V2(PO4)3的实用电化学性能.未经掺杂的Li3V2(PO4)3原粉在1/9C、1C和6C倍率下的可逆比容量分别为141、119和98 mAh·g-1,而三元掺杂改性材料在1/9C、1C、8C和14C倍率下的比容量分别为172、139、119和115 mAh·g-1.在1C倍率下循环300圈后,掺杂体系的比容量依然高达118 mAh·g-1,比原粉高出32.6%.值得注意的是,这种三元掺杂还使Li3V2(PO4)3的多平台放电曲线近似转变为一条斜线,显示出可能不同的储锂机制.  相似文献   

8.
掺杂Mo的LiFePO4正极材料的电化学性能   总被引:8,自引:0,他引:8  
通过固相法以(NH4)6Mo7O24·4H2O为钼源,在氮气气氛下合成出掺杂Mo的LiFePO4正极材料.采用X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、扩展X射线吸收精细结构(EXAFS)和正电子湮没进行结构表征,通过不同放电倍率研究掺Mo的LiFePO4电化学性能.结果表明,掺Mo的LiFePO4呈橄榄石结构,Mo6+同时占据着Fe位及Li位,提高了LiFePO4的电导率,lC放电可逆容量为141 mAh·g-1,表现出良好的电化学性能.  相似文献   

9.
通过固相法以(NH4)6Mo7O24·4H2O为钼源, 在氮气气氛下合成出掺杂Mo的LiFePO4正极材料. 采用X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、扩展X射线吸收精细结构(EXAFS)和正电子湮没进行结构表征, 通过不同放电倍率研究掺Mo的LiFePO4电化学性能. 结果表明, 掺Mo的LiFePO4呈橄榄石结构, Mo6+同时占据着Fe位及Li位, 提高了LiFePO4的电导率, 1C放电可逆容量为141 mAh·g-1, 表现出良好的电化学性能.  相似文献   

10.
李娟  杨辉 《电化学》2011,(4):399-404
以柠檬酸为螯合剂,应用溶胶-凝胶法制备锂离子电池正极材料LiV3O8,并通过掺杂过渡金属离子M(Mn、Ti、Co和Ni)部分取代V,经烧结制得LiMxV3-xO8.X射线衍射、热重/差热、扫描电镜及充放电和循环伏安等表征样品的结构、形貌和检测电极电化学性能.结果表明,烧结温度对样品的结构、形貌和性能均有影响.500℃烧...  相似文献   

11.
VO43- anion was used to partially substitute for PO43- in the Nasicon compound of LiSn2(PO4)3 via a sol-gel method. XRD analysis revealed that the VO43--substituted samples did not have a single LiSn2(PO4)3 phase, and some secondary phases like SnO2 and SnP2O7 appeared. Introduction of the VO43- anion did not prevent the LiSn2(PO4)3 compound from decomposing during the initial lithiation; however the VO43- anion substitution remar-kably enhanced the rate capability and cycling performance of the products because they reduced the charge transfer impedance, increased the lithium ion diffusion, and strengthened the role of the Li3PO4 matrix due to the precipitation of the Li3VO4phase. Of the substituted samples, the sample with a nominal composition of LiSn2(PO4)2.5(VO4)0.5 delivered a capacity of 449.2 mA·h/g at a rate of 0.25 C after 25 cycles and 373.8 mA·h/g at 2 C rate. Those values surpassed some previous reports on LiSn2(PO4)3 and the LiSn2(PO4)3/C composites. Accordingly, the partial substitution of phosphorus by vanadium in LiSn2(PO4)3 is a feasible technique to remarkably improve its electrochemical properties.  相似文献   

12.
The electrochemical lithium insertion reaction of monoclinic Li(3)Fe(2)(PO(4))(3) as cathode materials of lithium-ion batteries was investigated from the viewpoint of the electronic structure around Fe and the polyanion unit (PO(4)). Fe K-edge and L(III,II)-edge XAS measurements revealed that Fe(3+) was reduced to Fe(2+) upon Li insertion. In addition, O K-edge and P K-edge XAS also showed spectral changes upon Li insertion, which corresponded to changes in the electronic structure of the PO(4) polyanion unit. The ab initio density functional calculation was performed within the GGA and LDA+U methods. The LDA+U method reproduced well the cell potential upon lithium intercalation into Li(3)Fe(2)(PO(4))(3), whereas the GGA method underestimated the intercalation. The calculated electronic structure of Li(3)Fe(2)(PO(4))(3) described strong P 3p-O 2p covalent bonding, while weak hybridization was indicated in Fe 3d-O 2p. Moreover, the difference in electronic density between Li(3)Fe(2)(PO(4))(3) and the lithiated model indicated that the polarization effect between inserted Li and oxygen induced the changes in the electronic structure around the polyanion unit.  相似文献   

13.
SO_4~(2-)/TiO_2和SO_4~(2-)/Fe_2O_3固体超强酸研究   总被引:2,自引:0,他引:2  
用XRD、TG-DTG、SEM和化学分析等手段研究了浸渍H_2SO_4的无定形TiO2和Fe_2O_3在焙烧过程中的晶化、相变、失水及失硫情况,总结出SO42-/MxOy型固体超强酸具有与SO42-/ZrO2体系相同的形成规律;用IR光谱和常温正戊烷异构化反应对SO42-/TiO2和SO42-/Fe_2O_3的超强酸性进行了表征,表明它们与/ZrO_2体系具有相似的表面酸位结构,无水状态主要为L酸位,吸水后部分L酸位可转变为B酸位,但这两种体系的超强酸性均比SO42-/ZrO_2弱,其H0大约在-13~-14之间.  相似文献   

14.
Monoclinic lithium vanadium phosphate, alpha-Li(3)V(2)(PO(4))(3), is a highly promising material proposed as a cathode for lithium-ion batteries. It possesses both good ion mobility and high lithium capacity because of its ability to reversibly extract all three lithium ions from the lattice. Here, using a combination of neutron diffraction and (7)Li MAS NMR studies, we are able to correlate the structural features in the series of single-phase materials Li(3-y)V(2)(PO(4))(3) with the electrochemical voltage-composition profile. A combination of charge ordering on the vanadium sites and lithium ordering/disordering among lattice sites is responsible for the features in the electrochemical curve, including the observed hysteresis. Importantly, this work highlights the importance of ion-ion interactions in determining phase transitions in these materials.  相似文献   

15.
《中国化学会会志》2017,64(5):557-564
Novel Li3V2 (PO4)3 nanobelts, which was confirmed by the peaks of X‐ray diffraction, were prepared by a facile and environmentally friendly electrospinning method. A distinct nanobelt structure, with an average width of 2.5 µm and a thickness of 200 nm, is observed by scanning electron microscopy (SEM), while the specific surface area of 140.8 m2/g is estimated by a specific surface area analyzer. Moreover, the unique Li3V2(PO4)3 nanobelts exhibited a specific discharge capacity of 155.6 mAh/g at 0.2 C rate when they were used as cathode material in lithium‐ion batteries, on testing from 3.0 to 4.8 V. Remarkably, the batteries containing Li3V2(PO4)3 nanobelts displayed excellent cycling performance, with only a 0.02% fading rate per cycle after 50 cycles in the range 30–4.3 V. These outstanding electrochemical performances could be ascribed to the particular morphology, large surface area, homogeneous particle size distribution, and the one‐dimensional microstructure of Li3V2(PO4)3 nanobelts.  相似文献   

16.
Ti4+ ions were introduced to the VO43- substituted Li3Fe2(PO4)3 by sol-gel method. Simultaneous substitution of Ti4+ for Fe3+ and VO43- for PO43- in the Li3Fe2(PO4)3 resulted in a net improvement in the rate capability and cycling performance, as compared with the single Ti4+ or VO43- substituted compound.  相似文献   

17.
以LiOH·H2O, NH4VO3, NH4H2PO4 和麦芽糖等为原料, 采用水热法合成了碳包覆的磷酸钒锂化合物, 考察了碳含量对材料电化学性能的影响. 利用XRD, TEM, SEM和恒流充放电测试等手段对产物的结构、 形貌和电化学性能进行表征. 结果表明, 在650℃煅烧的样品为单一纯相的单斜晶体结构. 晶体颗粒分布为100~300 nm, 粒度分散均匀, 分散性良好, 无团聚现象, 且在颗粒表面包覆了一层无定形碳, 这有利于改善材料的导电率. 含碳量为10.23%的样品, 在倍率1.0C的电流密度下, 在3.0~4.3 V电压范围内, 样品的首次放电比容量高达118.8 mA·h/g, 循环15圈后放电比容量为115.1 mA·h/g, 容量保持率为96.88%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号