首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对InGaN量子阱LED的内量子效率进行了优化研究。分别对发光光谱、量子阱中的载流子浓度、能带分布、静电场和内量子效应进行了理论分析。对具有不同量子阱数量的InGaN/GaN LED进行了理论数值比对研究。研究结果表明,对于传统结构的LED而言,2个量子阱的结构相对于5个和7个量子阱具有更好的光学性能。同时还研究了具有三角形量子阱结构的LED,研究结果显示,三角形多量子阱结构具有较高的电致发光强度、更高的内量子效率和更好的发光效率,所有的优点都归因于较高的电子-空穴波函数重叠率和低的Stark效应所产生的较高的载流子输入效率和复合发光效率。  相似文献   

2.
利用金属有机物化学气相沉积系统在蓝宝石衬底上通过有源层的变温生长,得到In组分渐变的量子阱结构,从而获得具有三角形能带结构的InGaN/GaN多量子阱发光二极管(LED)(简称三角形量子阱结构LED).变温光致发光谱结果表明,相对于传统具有方形能带结构的量子阱LED(简称方形量子阱结构LED),三角形量子阱结构有效提高了量子阱中电子和空穴波函数的空间交叠,从而增加了LED的内量子效率;电致发光谱结果表明,三角形量子阱结构LED器件与传统结构LED器件相比,明显改善了发光峰值波长随着电流的蓝移现象.通过以上  相似文献   

3.
陈峻  范广涵  张运炎 《物理学报》2012,61(17):178504-178504
采用软件理论分析的方法对渐变型量子阱垒层厚度的InGaN双波长发光二极(LED)的载流子浓度分布、 能带结构、自发发射谱、内量子效率、发光功率及溢出电子流等进行研究.分析结果表明, 增大量子阱垒层厚度会影响空穴在各量子阱的注入情况, 对双波长LED各量子阱中空穴浓度分布的 均衡性及双波长发光光谱的调控起到一定作用,但会导致内量子效率严重下降; 而当以特定的方式从n电极到p电极方向递减渐变量子阱垒层厚度时, 活性层量子阱的溢出电子流 得到有效的控制, 双发光峰强度达到基本一致, 同时芯片的内量子效率下降得到了有效控制, 且具备大驱动电流下较好的发光特性.  相似文献   

4.
紫外LED的发光功率和效率还远不能令人们满意,波长短于300 nm的深紫外LED的发光效率普遍较低。厘清高Al组分Al Ga N多量子阱结构的发光机制将有利于探索改善深紫外LED的发光效率的新途径、新方法。为此,本文通过金属有机气相外延技术外延生长了表面平整、界面清晰可辨且陡峭的高Al组分AlGa N多量子阱结构材料,并对其进行变温光致发光谱测试,结合数值计算,深入探讨了Al Ga N量子阱的发光机制。研究表明,量子阱中具有很强的局域化效应,其发光和局域激子的跳跃息息相关,而发光的猝灭则与局域激子的解局域以及位错引起的非辐射复合有关。  相似文献   

5.
通过测量光电流,直接观察了InGaN/GaN量子阱中载流子的泄漏程度随温度升高的变化关系。当LED温度从300K升高到360K时,在相同的光照强度下,LED的光电流增大,说明在温度上升之后,载流子从量子阱中逃逸的数目更多,即载流子泄漏比例增大。同时,光电流的增大在激发密度较低的时候更为明显,而且光电流随温度的增加幅度与激发光子的能量有关。用量子阱-量子点复合模型能很好地解释所观察到的实验现象。实验结果直接证明,随着温度的升高,InGaN/GaN量子阱中的载流子泄漏将显著增加,而且在低激发密度下这一效应更为明显。温度升高导致的载流子泄漏增多是InGaN多量子阱LED发光效率随温度升高而降低的重要原因。  相似文献   

6.
利用金属有机物化学气相淀积技术在蓝宝石衬底上生长了InGaN/GaN量子阱结构. 研究了引入n型InGaN薄层或InGaN/GaN超晶格层的量子阱特性,结果表明通过引入n型InGaN薄层或InGaN/GaN超晶格层缓解了量子阱有源区中的应力,改善了多量子阱表面形貌,减少了V型缺陷密度,而且提高了多量子阱的光致发光强度,从而也改进了LED的发光效率. 关键词: InGaN/GaN多量子阱 原子力显微镜 X射线双晶衍射 光致发光  相似文献   

7.
采用模拟计算的方法,运用量子点模型对GaN基LED器件中不同尺寸量子点的电致发光光谱进行模拟分析,并对器件结构中电子空穴浓度,辐射复合强度进行了研究.分析结果显示,随着量子点尺寸的增大,量子点发光波长存在红移,当圆柱状量子点半径从1.8nm增长到13nm时,波长红移309.6meV,在量子阱中生长单一尺寸的量子点可以达到不同波长的单色发光器件,而在不同量子阱中生长不同尺寸的量子点可以实现多波长发光,以及单颗LED的白色显示,并通过调节量子点的分布密度达到调节各发光波长强度的目的.结果表明,量子点分布密度调节之后多波长发光均匀性得到有效改善.  相似文献   

8.
李芸  杨治美  马瑶  龚敏  何飞 《光散射学报》2017,29(3):271-276
本文采用Silvaco TCAD软件对GaN基InGaN/GaN量子阱蓝光发光二极管(LED)的光谱特性进行了仿真研究。研究结果表明:光谱会随着注入电压的增加而产生蓝移现象,并出现0.365μm处的紫外光发光峰;发光效率在正向电流较小时增长很快,随着正向电流进一步增加而逐渐趋于饱和;随着量子阱中In组分和量子阱阱层厚度的增加,发光光谱出现红移现象,并且发光效率下降。仿真结果对GaN基InGaN/GaN量子阱结构蓝光LED的设计和优化提供一定的依据。  相似文献   

9.
(CdZnTe,ZnS)/ZnTe复合量子阱的光学特性研究   总被引:2,自引:4,他引:2       下载免费PDF全文
设计并制备了一种新型的(CdZnTe,ZnS)/ZnTe复合量子阱结构.使CdZnTe量子阱中的激子有可能在短时间内隧穿到ZnS阱层,从而达到提高光双稳器件“关”速度的目的.并通过对发光特性的研究证实在我们设计的结构中横向激子隧穿的存在,从而为进一步研究超高速光开关提供了实验依据.  相似文献   

10.
金属有机化学气相沉积(MOCVD)方法制备InGaN/GaN多量子阱结构时,在GaN势垒层生长的N2载气中引入适量H2,能够有效改善阱/垒界面质量从而提升发光效率.本工作利用光致发光(PL)光谱技术,对蓝光激光器结构中的InGaN/GaN多量子阱的发光性能进行了精细的光谱学测量与表征,研究了通H2生长对量子阱界面的调控...  相似文献   

11.
使用MOCVD在图形化Si衬底上生长了含V形坑的InGaN/GaN蓝光LED。通过改变生长温度,生长了禁带宽度稍大的载流子限制阱和禁带宽度稍小的发光阱,研究了两类量子阱组合对含V形坑InG aN/GaN基蓝光LED效率衰减的影响。使用高分辨率X射线衍射仪和LED电致发光测试系统对LED外延结构和LED光电性能进行了表征。结果表明:限制阱靠近n层、发光阱靠近p层的新型量子阱结构,在室温75 A/cm~2时的外量子效率相对于其最高点仅衰减12.7%,明显优于其他量子阱结构的16.3%、16.0%、28.4%效率衰减,且只有这种结构在低温时(T≤150 K)未出现内量子效率随电流增大而剧烈衰减的现象。结果表明,合理的量子阱结构设计能够显著提高电子空穴在含V形坑量子阱中的有效交叠,促进载流子在阱间交互,提高载流子匹配度,抑制电子泄漏,从而减缓效率衰减、提升器件光电性能。  相似文献   

12.
本文将基于有效质量近似下的变分法,理论研究了纤锌矿InGaN/GaN staggered量子阱中的激子态和光学性质.数值结果显示了InGaN量子阱中的量子尺寸和staggered受限垒对束缚于量子阱中的激子态和光学性质有着明显的影响.当阱宽增加时,量子受限效应减弱,激子结合能降低,带间发光波长增加.另一方面,当量子阱中staggered受限势增加时,量子受限效应增强,激子结合能升高,带间发光波长降低.本文的理论结果证明了可以通过调节staggered垒高和量子尺寸来调控纤锌矿InGaN staggered量子阱中的激子态和光学性质.  相似文献   

13.
采用感应耦合等离子体刻蚀技术对InAsP/InP应变多量子阱和InAsP/InGaAsP应变单量子阱材料的覆盖层进行了不同厚度的干法刻蚀. 实验结果表明,干法刻蚀后量子阱光致荧光强度得到了不同程度的增强. 干法刻蚀过程不仅增加了材料表面粗糙度,同时使其内部微结构发生变化. 采用湿法腐蚀方法去除表面变粗糙对量子阱发光特性的影响,得到干法刻蚀覆盖层20 nm后应变单量子阱微结构变化和其表面粗糙度变化两个因素分别使荧光强度提高1.8倍和1.2倍的结果. 关键词: 干法刻蚀 应变多量子阱 光致发光谱 损伤  相似文献   

14.
刘战辉  张李骊  李庆芳  张荣  修向前  谢自力  单云 《物理学报》2014,63(20):207304-207304
分别在Si(110)和Si(111)衬底上制备了In Ga N/Ga N多量子阱结构蓝光发光二极管(LED)器件.利用高分辨X射线衍射、原子力显微镜、室温拉曼光谱和变温光致发光谱对生长的LED结构进行了结构表征.结果表明,相对于Si(111)上生长LED样品,Si(110)上生长的LED结构晶体质量较好,样品中存在较小的张应力,具有较高的内量子效率.对制备的LED芯片进行光电特性分析测试表明,两种衬底上制备的LED芯片等效串联电阻相差不大,在大电流注入下内量子效率下降较小;但是,相比于Si(111)上制备LED芯片,Si(110)上LED芯片具有较小的开启电压和更优异的发光特性.对LED器件电致发光(EL)发光峰随驱动电流的变化研究发现,由于Si(110)衬底上LED结构中阱层和垒层存在较小的应力/应变而在器件中产生较弱的量子限制斯塔克效应,致使Si(110)上LED芯片EL发光峰随驱动电流的蓝移量更小.  相似文献   

15.
垒温对硅衬底GaN基蓝光LED发光效率的影响   总被引:1,自引:1,他引:0  
用MOCVD技术在硅衬底上生长了GaN基蓝光LED外延材料,研究了有源层多量子阱中垒的生长温度对发光效率的影响,获得了不同电流密度下外量子效率(EQE)随垒温的变化关系。结果表明,在860~915℃范围内,发光效率随着垒温的上升而上升。当垒温超过915℃后,发光效率大幅下降。这一EL特性与X光双晶衍射和二次离子质谱所获得的阱垒界面陡峭程度有明显的对应关系,界面越陡峭则发光效率越高。垒温过高使界面变差的原因归结为阱垒界面的原子扩散。垒温偏低使界面变差的原因归结为垒对前一个量子阱界面的修复作用和为后一个量子阱提供台阶流界面的能力偏弱。外延生长时的最佳垒温范围为895~915℃。  相似文献   

16.
量子阱结构对有机电致发光器件效率的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
朱海娜  徐征  赵谡玲  张福俊  孔超  闫光  龚伟 《物理学报》2010,59(11):8093-8097
实验中共制备了五种有机量子阱结构电致发光器件,分别对这五种量子阱结构器件的电致发光特性进行了研究,分析了量子阱结构的周期数和势垒层的厚度对器件电学性能的影响.实验结果表明适当周期数的量子阱结构器件的亮度和电流效率比传统的三层结构器件的要大,主要原因是量子阱结构对电子和空穴的限制作用,这种限制作用提高了电子和空穴在发光层中形成激子和复合的概率,从而提高了发光的亮度和效率.当改变阱结构器件中势阱层的厚度时,也会对器件的亮度和效率产生影响,采用适当的势阱层厚度能够提高器件的亮度和效率. 关键词: 量子阱结构 电致发光 电流效率 光谱  相似文献   

17.
三维结构GaN基LED能够解决二维GaN基薄膜LED中存在的量子限制斯塔克效应、效率骤降、发光波长单一等问题。基于此,本文对三维类金字塔状GaN微米锥的发光性能进行了详细的研究。通过金属有机化合物化学气相沉积原位沉积SiN_x掩模层后,首先制备了底面尺寸为8μm、高度7.5μm的类金字塔状GaN微米锥,之后在其半极性面外延生长了3个周期的InGaN/GaN多量子阱。通过阴极荧光测试发现,类金字塔状GaN微米锥的半极性面上不同位置发光波长不同;变功率微区光致发光测试表明,类金字塔状GaN微米锥的半极性面在InGaN/GaN多量子阱沉积之后极化场较弱;对InGaN/GaN多量子阱进行了透射电镜表征,结合阴极荧光光谱的结果最终解释了In原子在类金字塔状GaN微米锥上的迁移机理。利用其半极性面不同位置发光波长不同的结构特点及光学特性,可以制备多波长发射LED。  相似文献   

18.
GaAs量子阱太阳能电池量子效率的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
丁美斌  娄朝刚  王琦龙  孙强 《物理学报》2014,63(19):198502-198502
将量子阱结构引入到单结GaAs太阳能电池中能够有效扩展吸收光谱.为了研究量子阱结构在GaAs太阳能电池中的作用机理,本文采用实验和理论的方法研究了InGaAs/GaAsP量子阱结构对电池量子效率的影响.实验结果表明,量子阱结构的窄带隙阱层材料将电池的吸收光谱从890 nm扩展到1000 nm.同时,量子阱结构的引入提高了680—890 nm波长范围内的量子效率,降低了波长在680 nm以下的量子效率.通过计算得到的量子阱结构和GaAs材料的光吸收系数,可以用来解释量子阱结构对太阳能电池量子效率的影响.  相似文献   

19.
有机量子阱具有优异的光电性能,在光电子器件中有广泛的应用.论述了如何证明有机量子阱的存在及其国内外研究现状,介绍了有机量子阱在有机电致发光中的应用以及存在的问题,重点是如何利用有机量子阱提高发光性能,并指出了今后的研究方向.  相似文献   

20.
Si掺杂对AlGaInP/GaInP多量子阱性能的影响   总被引:1,自引:1,他引:0  
采用LP-MOCVD技术在n-GaAs衬底上生长了AlGaInP/GaInP多量子阱红光LED外延片。以X射线双晶衍射技术和光致发光技术对外延片进行了表征,研究了Si掺杂对AlGaInP/GaInP多量子阱性能的影响。研究表明:掺Si能大大提高(Al0.3Ga0.7)0.5In0.5P/Ga0.5In0.5P多量子阱的发光强度。相对于未故意掺杂的样品,多量子阱垒层掺Si使多量子阱的发光强度提高了13倍,阱层和垒层均掺Si使多量子阱的发光强度提高了28倍。外延片的X射线双晶衍射测试表明,Si掺杂并没有使多量子阱的界面质量变差。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号