共查询到20条相似文献,搜索用时 0 毫秒
1.
本文研究了有压模化介质在垂直矩形窄缝流道内的过冷流动沸腾换热,考察了质量流速、断面平均过冷度和饱和压力对沸腾换热系数的影响,与Gungor关系式进行比较,流道的换热强化因于在13~21之间. 相似文献
2.
本文实验研究了水在间隙为2.1、2.2、3.6 mm的垂直矩形窄通道内流动沸腾压降,包括入口过冷的情况,得到了在不同操作条件下压降随热流密度的变化曲线,同时分析了曲线变化的原因.实验结果发现:在实验参数范围内,流动沸腾的压降随着质量流速、热流密度和入口干度增加而增大;随着窄缝间隙的增大而减小.窄通道内的压降计算与大通道有显著不同,本文针对窄通道的特点,修正了传统的压降计算模型,模型预测值与实验结果比较,误差在±15.4%之内. 相似文献
3.
以去离子水为工质,在1.0~6.0 MPa的压力范围内对大宽高比(1.0×60 mm,1.8×60 mm,2.5×60 mm)矩形窄缝通道内水的两相沸腾流动特性进行了实验研究.分别采用均相流和分相流模型对试验数据进行处理并得到了相应的修正经验关系式,关系式预测值与实验值符合较好. 相似文献
4.
通过高速摄像可视化研究发现,在p=1.3~2MPa时,F-12质初始汽泡在壁面以小于0.1m/s的低速滑动中生长。热流密度和断面平均过冷度等参数对初始汽泡影响较大,热流密度越高,沸腾越早发生;小汽泡(d=0.01~0.07mm)运动速度在0.1~0.2 m/s左右,而较大(d=0.1~0.3 mm)汽泡的运动速度在0.25~0.7m/s左右。较大汽泡聚合小汽泡的过程是汽泡从小汽泡生长为大汽泡乃至于汽层的主要形式。 相似文献
5.
窄缝通道中的液氮沸腾传热特性有别于开放空间中的情况.文中对常压下液氮在矩形窄缝通道内的沸腾传热进行了实验研究,系统地研究了窄缝几何结构参数和倾角对液氮的沸腾传热特性的影响. 相似文献
6.
为研究板式换热器内(蒸发-冷凝器)两相换热机理及流型特征,建立单侧蒸汽加热竖直矩形窄通道可视化实验系统,并进行实验研究。结果表明:在窄通道换热中,以核态沸腾换热机理更为活跃,流动沸腾受到抑制,表面换热系数最大值出现在核态沸腾区域;随着入口温度越高,表面换热系数最大点往左迁移,随着质量流量的增大,过冷段增加,沸腾起始点升高,表面换热系数最大点往右移;矩形窄通道主要出现泡状流、合并汽泡流、搅拌流和环状流四种流型;将实验数据与现有流型图进行对比,发现流型转变与质量流量、通道尺寸及加热方式有关。该研究为更好的设计板式换热器提供了理论依据。 相似文献
7.
本文对去离子水在竖直环形小通道内流动过冷沸腾时的气泡行为进行了可视化研究,观察到了气泡在流动沸腾过程中的生长,合并,脱离,滑移及气泡脱离壁面后的运动等现象,并结合气泡动力学理论模型及气泡滑移模型,对实验结果进行了对比分析,总结了本实验通道中气泡行为的特性。 相似文献
8.
以去离子水为工质,配合高速摄像观测,研究了截面为0.5 mmx5mm的微细窄矩形通道内氧化锌微米线结构表面的竖直流动过冷沸腾.流量范围200~400 kg·m-2s-1,过冷度为10 K,热流密度最高为200 kW·m-2.分析了不同工况下过冷沸腾的沸腾曲线、平均换热系数、局部换热系数和流型特征. 相似文献
9.
本文采用拍摄速度为10000帧/秒的高速摄影仪对不锈钢箔表面的过冷沸腾现象进行了可视化实验研究。实验结果与用微液层模型理论预测的结果一致。高过冷度区域的沸腾换热机理主要是由气泡生长、消失过程中温度边界层的强制排除(所谓强制对流)引起的。气泡周期主要由等待时间构成,这在过冷度高的情况下尤为显著。对等热流密度换热面,微液层模型预测的气泡周期与实验值比较吻合。 相似文献
10.
通过对沸腾气泡在液体中的受力分析,建立了沸腾气泡长大过程的动力学方程;进而获得了沸腾气泡的生长速率与脱离直径的计算方法.采用图象捕集与处理系统,对竖直矩形通道内液体流动沸腾气泡长大与脱离行为进行实验测定,结合模型求解,获得了气泡生长速率、气泡脱离直径、气泡与加热壁面的接触角等参数随操作条件的变化;由模型计算所得的气泡脱离直径与实测值较为符合. 相似文献
11.
在实验的基础上对窄缝通道中液氮的临界热流密度进行了实验研究.实验针对3个不同长度和间距尺寸的窄缝通道在多方位倾角的情况下进行.系统研究了窄缝的方位倾角和窄缝的几何尺寸对临界热流密度的影响,同时对液氮的膜态沸腾进行了研究. 相似文献
12.
本文实验研究了常压下液氮在多方位矩形窄缝通道中的沸腾传热特性。研究发现液氮在不同窄缝方位角时,壁面过热度有差异;窄缝间隙愈小,沸腾传热系数愈高。在中等热流密度下,强化传热作用明显,传热系数可达常规光管的3~5倍。加热面呈0°和180°放置时,在相同热流下其他角度尚处于核态沸腾区时,已达CHF点。 相似文献
13.
本文从理论上对窄缝中的过冷态超流氦传热做了一定的研究 .研究的主要方面是过冷态超流氦的临界热负荷与温度、窄缝宽度、及窄缝取向之间的定性关系与定量关系表达式 相似文献
14.
实验以去离子水为工质,研究矩形窄通道内饱和沸腾起始点的影响因素。通过改变矩形板的壁面加热功率密度,工质的质量流量和入口温度分析饱和沸腾起始点的变化规律.实验得出:饱和沸腾段随着加热功率密度的增加而增加,随着质量流量的增加而缩短,随着入口温度的增加而增加,但入口温度在高加热功率密度时对饱和沸腾起始点的影响相对较小,在低加热功率密度下影响较大。 相似文献
16.
本文以水为工质,研究了工况参数对竖直矩形窄缝流道内上升过冷流动沸腾的汽化核心密度和汽泡脱离频率的影响。研究发现,流道间隙越小则汽化核心密度越大,汽化核心密度和最小成核半径存在定量关系;热流密度增大、过冷度降低或压力升高都使汽泡脱离频率增大,热流密度增大时,压力对汽泡脱离频率的影响增大。 相似文献
17.
采用玻璃钢 (FRP)制成的矩形窄缝 ,对三种不同的间隙尺寸 ,分加热面与水平面呈 0°,4 5°,90°,135°,180°五种角度 ,以液氮为工质进行了 15组池沸腾实验。得出结论 :液氮在窄缝中的沸腾传热有明显的强化换热效果 ;加热面所处角度不同 ,在相同热负荷下壁面过热度亦不同 ,滑移汽泡和微液膜蒸发机理在通道中发挥的作用也相应不同。该研究对于有限空间传热强化的机理和实际应用都有一定的参考价值和指导意义。 相似文献
18.
为加深对含内热源球床通道内流动过冷沸腾换热机理的研究,采用高速摄像仪对通道内流动过冷沸腾时的汽泡行为进行了可视化实验研究。结果表明:汽泡在通道内很容易受到球体的阻碍而附着于球面上,受到阻碍的汽泡将沿球面进行滑移运动;汽泡存在大量的"重生现象",即生成的汽泡在生存阶段可能出现多次生长的情况;在球与球接触的角区,会产生稳定的汽化核心点。角区的结构形式对汽泡的脱离直径及脱离频率产生较大的影响。 相似文献
19.
本文利用可视化手段实验研究矩形截面微通道(1 mm×0.5 mm)内发生流动沸腾时气泡的生长及受限现象。实验使用去离子水为工质,气泡受限过程由高速CCD相机观察并记录。研究发现,气泡高度方向通道壁面的存在对气泡在该方向的生长产生强烈的限制作用,气泡生长后期顶端气液界面在并未与限制壁面接触时其曲率便明显减小,壁面对气泡生长的限制作用通过其对气泡界面施加一个壁面限制力而体现.通过对比不同运行工况条件下的气泡受限现象,分析讨论了气泡受限过程中其界面形状变化规律及影响因素。 相似文献
20.
微通道换热器因其结构紧凑、换热能力高、工质消耗少等优点成为解决微小空间"散热难"问题的有效途径之一,采用多孔材料制作的微通道热沉能够极大地增加换热面体比,因而可以进一步提高其换热能力.本文利用可视化手段对槽道翅片顶部与盖板间留有狭缝、通道截面为矩形(400 μm×600 μm)的开放型多孔微通道的流动沸腾现象进行实验研... 相似文献
|