首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A proper orthogonal decomposition (POD) method is applied to a usual finite volume element (FVE) formulation for parabolic equations such that it is reduced to a POD FVE formulation with lower dimensions and high enough accuracy. The error estimates between the reduced POD FVE solution and the usual FVE solution are analyzed. It is shown by numerical examples that the results of numerical computation are consistent with theoretical conclusions. Moreover, it is also shown that the reduced POD FVE formulation based on POD method is both feasible and highly efficient.  相似文献   

2.
We treat the finite volume element method (FVE) for solving general second order elliptic problems as a perturbation of the linear finite element method (FEM), and obtain the optimal H1 error estimate, H1 superconvergence and Lp (1 < p ≤ ∞) error estimates between the solution of the FVE and that of the FEM. In particular, the superconvergence result does not require any extra assumptions on the mesh except quasi‐uniform. Thus the error estimates of the FVE can be derived by the standard error estimates of the FEM. Moreover we consider the effects of numerical integration and prove that the use of barycenter quadrature rule does not decrease the convergence orders of the FVE. The results of this article reveal that the FVE is in close relationship with the FEM. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 693–708, 2003.  相似文献   

3.
Summary Consider the solution of one-dimensional linear initial-boundary value problems by a finite element method of lines using a piecewiseP th -degree polynomial basis. A posteriori estimates of the discretization error are obtained as the solutions of either local parabolic or local elliptic finite element problems using piecewise polynomial corrections of degreep+1 that vanish at element ends. Error estimates computed in this manner are shown to converge in energy under mesh refinement to the exact finite element discretization error. Computational results indicate that the error estimates are robust over a wide range of mesh spacings and polynomial degrees and are, furthermore, applicable in situations that are not supported by the analysis.This research was partially supported by the U.S. Air Force Office of Scientific Research, Air Force Systems Command, USAF, under Grant Number AFOSR 90-0194; by the U.S. Army Research Office under Contract Number DAAL03-91-G-0215; and by the National Science Foundation under Institutional Infrastructure Grant Number CDA-8805910  相似文献   

4.
Summary A finite element discretization of the mixed variable formulation of the biharmonic problem is considered. A multilevel algorithm for the numerical solution of the discrete equations is described. Convergence is proved under the assumption ofH 3-regularity.  相似文献   

5.
On the multi-level splitting of finite element spaces   总被引:13,自引:0,他引:13  
Summary In this paper we analyze the condition number of the stiffness matrices arising in the discretization of selfadjoint and positive definite plane elliptic boundary value problems of second order by finite element methods when using hierarchical bases of the finite element spaces instead of the usual nodal bases. We show that the condition number of such a stiffness matrix behaves like O((log )2) where is the condition number of the stiffness matrix with respect to a nodal basis. In the case of a triangulation with uniform mesh sizeh this means that the stiffness matrix with respect to a hierarchical basis of the finite element space has a condition number behaving like instead of for a nodal basis. The proofs of our theorems do not need any regularity properties of neither the continuous problem nor its discretization. Especially we do not need the quasiuniformity of the employed triangulations. As the representation of a finite element function with respect to a hierarchical basis can be converted very easily and quickly to its representation with respect to a nodal basis, our results mean that the method of conjugate gradients needs onlyO(log n) steps andO(n log n) computer operations to reduce the energy norm of the error by a given factor if one uses hierarchical bases or related preconditioning procedures. Heren denotes the dimension of the finite element space and of the discrete linear problem to be solved.  相似文献   

6.
The main aim of this paper is to study the error estimates of a rectangular nonconforming finite element for the stationary Navier-Stokes equations under anisotropic meshes. That is, the nonconforming rectangular element is taken as approximation space for the velocity and the piecewise constant element for the pressure. The convergence analysis is presented and the optimal error estimates both in a broken H1-norm for the velocity and in an L2-norm for the pressure are derived on anisotropic meshes.  相似文献   

7.
Summary Asymptotic expansions for mixed finite element approximations of the second order elliptic problem are derived and Richardson extrapolation can be applied to increase the accuracy of the approximations. A new procedure, which is called the error corrected method, is presented as a further application of the asymptotic error expansion for the first order BDM approximation of the scalar field. The key point in deriving the asymptotic expansions for the error is an establishment ofL 1-error estimates for mixed finite element approximations for the regularized Green's functions. As another application of theL 1-error estimates for the regularized Green's functions, we shall present maximum norm error estimates for mixed finite element methods for second order elliptic problems.  相似文献   

8.
Summary It has been shown that the multigrid method as applied to finite element systems can produce a solution to the equations inO(N) arithmetical operations whereN is the number of unknowns. This result was obtained under the assumption that there was no approximation of the boundary. It is shown here that this result holds also in the case that the boundary is approximated and isoparametric elements are used.This research was supported by NSF grant MCS76-06293  相似文献   

9.
The purpose of this paper is to study the effect of the numerical quadrature on the finite element approximation to the exact solution of elliptic equations with discontinuous coefficients. Due to low global regularity of the solution, it seems difficult to achieve optimal order of convergence with classical finite element methods [Z. Chen, J. Zou, Finite element methods and their convergence for elliptic and parabolic interface problems, Numer. Math. 79 (1998) 175-202]. We derive error estimates in finite element method with quadrature for elliptic interface problems in a two-dimensional convex polygonal domain. Optimal order error estimates in L2 and H1 norms are shown to hold even if the regularity of the solution is low on the whole domain. Finally, numerical experiment for two dimensional test problem is presented in support of our theoretical findings.  相似文献   

10.
Summary. A mixed field-based variational formulation for the solution of threedimensional magnetostatic problems is presented and analyzed. This method is based upon the minimization of a functional related to the error in the constitutive magnetic relationship, while constraints represented by Maxwell's equations are imposed by means of Lagrange multipliers. In this way, both the magnetic field and the magnetic induction field can be approximated by using the most appropriate family of vector finite elements, and boundary conditions can be imposed in a natural way. Moreover, this method is more suitable than classical approaches for the approximation of problems featuring strong discontinuities of the magnetic permeability, as is usually the case. A finite element discretization involving face and edge elements is also proposed, performing stability analysis and giving error estimates. Received January 23, 1998 / Revised version received July 23, 1998 / Published online September 24, 1999  相似文献   

11.
Summary The finite element method with non-uniform mesh sizes is employed to approximately solve Helmholtz type equations in unbounded domains. The given problem on an unbounded domain is replaced by an approximate problem on a bounded domain with the radiation condition replaced by an approximate radiation boundary condition on the artificial boundary. This approximate problem is then solved using the finite element method with the mesh graded systematically in such a way that the element mesh sizes are increased as the distance from the origin increases. This results in a great reduction in the number of equations to be solved. It is proved that optimal error estimates hold inL 2,H 1 andL , provided that certain relationships hold between the frequency, mesh size and outer radius.  相似文献   

12.
Summary. The finite element method is a reasonable and frequently utilised tool for the spatial discretization within one time-step in an elastoplastic evolution problem. In this paper, we analyse the finite element discretization and prove a priori and a posteriori error estimates for variational inequalities corresponding to the primal formulation of (Hencky) plasticity. The finite element method of lowest order consists in minimising a convex function on a subspace of continuous piecewise linear resp. piecewise constant trial functions. An a priori error estimate is established for the fully-discrete method which shows linear convergence as the mesh-size tends to zero, provided the exact displacement field u is smooth. Near the boundary of the plastic domain, which is unknown a priori, it is most likely that u is non-smooth. In this situation, automatic mesh-refinement strategies are believed to improve the quality of the finite element approximation. We suggest such an adaptive algorithm on the basis of a computable a posteriori error estimate. This estimate is reliable and efficient in the sense that the quotient of the error by the estimate and its inverse are bounded from above. The constants depend on the hardening involved and become larger for decreasing hardening. Received May 7, 1997 / Revised version received August 31, 1998  相似文献   

13.
Summary We construct and analyze finite element methods for approximating the equations of linear elastodynamics, using mixed elements for the discretization of the spatial variables. We consider two different mixed formulations for the problem and analyze semidiscrete and up to fourth-order in time fully discrete approximations.L 2 optimal-order error estimates are proved for the approximations of displacement and stress.Work supported in part by the Hellenic State Scholarship Foundation  相似文献   

14.
Summary We estimate the order of the difference between the numerical approximation and the solution of a parabolic variational inequality. The numerical approximation is obtained using a finite element discretization in space and a finite difference discretization in time which is more general than is used in the literature. We obtain better error estimates than those given in the literature. The error estimates are compared with numerical experiments.  相似文献   

15.
We describe an adaptive mesh refinement finite element method-of-lines procedure for solving one-dimensional parabolic partial differential equations. Solutions are calculated using Galerkin's method with a piecewise hierarchical polynomial basis in space and singly implicit Runge-Kutta (SIRK) methods in time. A modified SIRK formulation eliminates a linear systems solution that is required by the traditional SIRK formulation and leads to a new reduced-order interpolation formula. Stability and temporal error estimation techniques allow acceptance of approximate solutions at intermediate stages, yielding increased efficiency when solving partial differential equations. A priori energy estimates of the local discretization error are obtained for a nonlinear scalar problem. A posteriori estimates of local spatial discretization errors, obtained by order variation, are used with the a priori error estimates to control the adaptive mesh refinement strategy. Computational results suggest convergence of the a posteriori error estimate to the exact discretization error and verify the utility of the adaptive technique.This research was partially supported by the U.S. Air Force Office of Scientific Research, Air Force Systems Command, USAF, under Grant Number AFOSR-90-0194; the U.S. Army Research Office under Contract Number DAAL 03-91-G-0215; by the National Science Foundation under Grant Number CDA-8805910; and by a grant from the Committee on Research, Tulane University.  相似文献   

16.
Summary In this paper the discretization of the Timoshenko Beam problem by thep and theh-p versions of the finite element method is considered. Optimal error estimates are established. The locking phenomenon disappears as the thickness of the beam decreases.  相似文献   

17.
Summary This paper deals with an algorithm for the solution of diffusion and/or convection equations where we mixed the method of characteristics and the finite element method. Globally it looks like one does one step of transport plus one step of diffusion (or projection) but the mathematics show that it is also an implicit time discretization of thePDE in Lagrangian form. We give an error bound (h+t+h×h/t in the interesting case) that holds also for the Navier-Stokes equations even when the Reynolds number is infinite (Euler equation).  相似文献   

18.
Standard Galerkin finite element methods or finite difference methods for singular perturbation problems lead to strongly unsymmetric matrices, which furthermore are in general notM-matrices. Accordingly, preconditioned iterative methods such as preconditioned (generalized) conjugate gradient methods, which have turned out to be very successful for symmetric and positive definite problems, can fail to converge or require an excessive number of iterations for singular perturbation problems.This is not so much due to the asymmetry, as it is to the fact that the spectrum can have both eigenvalues with positive and negative real parts, or eigenvalues with arbitrary small positive real parts and nonnegligible imaginary parts. This will be the case for a standard Galerkin method, unless the meshparameterh is chosen excessively small. There exist other discretization methods, however, for which the corresponding bilinear form is coercive, whence its finite element matrix has only eigenvalues with positive real parts; in fact, the real parts are positive uniformly in the singular perturbation parameter.In the present paper we examine the streamline diffusion finite element method in this respect. It is found that incomplete block-matrix factorization methods, both on classical form and on an inverse-free (vectorizable) form, coupled with a general least squares conjugate gradient method, can work exceptionally well on this type of problem. The number of iterations is sometimes significantly smaller than for the corresponding almost symmetric problem where the velocity field is close to zero or the singular perturbation parameter =1.The 2 nd author's research was sponsored by Control Data Corporation through its PACER fellowship program.The 3 rd author's research was supported by the Netherlands organization for scientific research (NWO).On leave from the Institute of Mathematics, Academy of Science, 1090 Sofia, P.O. Box 373, Bulgaria.  相似文献   

19.
A posteriori error estimators for the Stokes equations   总被引:5,自引:0,他引:5  
Summary We present two a posteriori error estimators for the mini-element discretization of the Stokes equations. One is based on a suitable evaluation of the residual of the finite element solution. The other one is based on the solution of suitable local Stokes problems involving the residual of the finite element solution. Both estimators are globally upper and locally lower bounds for the error of the finite element discretization. Numerical examples show their efficiency both in estimating the error and in controlling an automatic, self-adaptive mesh-refinement process. The methods presented here can easily be generalized to the Navier-Stokes equations and to other discretization schemes.This work was accomplished at the Universität Heidelberg with the support of the Deutsche Forschungsgemeinschaft  相似文献   

20.
Summary. We derive a residual-based a posteriori error estimator for a stabilized finite element discretization of certain incompressible Oseen-like equations. We focus our attention on the behaviour of the effectivity index and we carry on a numerical study of its sensitiveness to the problem and mesh parameters. We also consider a scalar reaction-convection-diffusion problem and a divergence-free projection problem in order to investigate the effects on the robustness of our a posteriori error estimator of the reaction-convection-diffusion phenomena and, separately, of the incompressibility constraint. Received March 21, 2001 / Revised version received July 30, 2001 / Published online October 17, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号