首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The absorption spectrum of the 18O3 isotopologue of ozone has been recorded in the 6200-6400 cm−1 region by high sensitivity CW-Cavity Ring Down Spectroscopy. The spectrum is dominated by the 2ν1 + 5ν3 and 2ν1 + 3ν2 + 3ν3 bands at 6270.6 and 6392.2 cm−1, respectively which were treated independently. The rovibrational analysis of the 2ν1 + 5ν3 band has evidenced that the (2 0 5) upper state is perturbed by Coriolis resonance interactions with the (0 1 6), (3 0 4) and (3 5 0) states. A total of 659, 89, 131 and 5 transitions were assigned to the 2ν1 + 5ν3, ν2 + 6ν3, 3ν1 + 4ν3 and 3ν1 + 5ν2 bands, respectively. In the case of the 2ν1 + 3ν2 + 3ν3 band, 344 transitions were assigned. Some of them were found perturbed by a Coriolis interaction of the (2 3 3) state with the (5 2 0) state.Overall, 681 energy levels were derived from the analysis of the 2ν1 + 5ν3 and 2ν1 + 3ν2 + 3ν3 band systems. In both cases, a suitable effective Hamiltonian was elaborated, allowing accounting satisfactorily for the retrieved rovibrational energy levels. In addition, dipole transition moment parameters were determined by a least-squares fit to the measured line intensities. The effective Hamiltonian and transition moment operator parameters were used to generate a list of 1619 transitions given as Supplementary material.  相似文献   

2.
The absorption spectrum of the 16O3 isotopologue of ozone has been recorded in the 7000-7920 cm−1 region by high sensitivity CW-Cavity Ring Down Spectroscopy. This report is devoted to the analyses of the 7065-7300 cm−1 region dominated by the ν1 + 2ν2 + 5ν3 and ν1 + 5ν2 + 3ν3 A-type bands at 7130.8 and 7286.8 cm−1 respectively. 289 transitions were assigned to the ν1 + 2ν2 + 5ν3 band. The corresponding line positions were modeled with an effective Hamiltonian involving Coriolis resonance interactions between the (1 2 5) upper state and the (4 4 0), (0 2 6) and (6 1 0) dark states, and an anharmonic resonance interaction with the (2 0 5) state. The very strong interaction (up to 50% mixing of the wavefunctions) between the (1 2 5) and (6 1 0) states leads to the observation of two extra lines of the 6ν1 + ν2 band due to a resonance intensity transfer. 213 transitions of the ν1 + 5ν2 + 3ν3 band were assigned and modeled taking into account a Coriolis resonance interaction with the (3 6 0) state.We take the opportunity of the present work to report the analysis of the very weak 4ν2 + 4ν3 B-type band at 6506.1 cm−1 which was assigned from previously recorded CRDS spectra. 286 transitions were modeled using the effective Hamiltonian approach.The dipole transition moment parameters of the three analyzed bands were determined by a least-squares fit to the measured line intensities. For the three studied band systems, the effective Hamiltonian and transition moment operator parameters were used to generate line lists provided as Supplementary Materials.  相似文献   

3.
The absorption spectrum of ozone,16O3, has been recorded in the 6220-6400 cm−1 region by high sensitivity CW-cavity ring down spectroscopy (αmin ∼ 3 × 10−10 cm−1). 1836 rovibrational transitions have been assigned to the 2ν2 + 5ν3, 5ν1 + ν3 and 2ν1 +  2ν2 + 3ν3 A-type bands centred at 6305, 6355 and 6387 cm−1, respectively. In addition, 99 lines of the very weak ν1 + 2ν2 +  4ν3 and 4ν1 + 3ν2 B-type bands are identified. The modeling of the observed spectrum in the effective Hamiltonian approach was particularly laborious and complex as several rovibrational interactions of both Coriolis and anaharmonic type were found to be of importance, in particular for the (124) vibrational state. Nevertheless, it has finally been possible to fit the 990 experimentally determined energy levels with an rms deviation of 8.29 × 10−3 cm−1 and to derive the transition moment parameters allowing a satisfactory reproduction of the observed intensities. As the differences in positions between the final calculations and observations are still larger than the experimental accuracy, we provide the list of all energy levels derived from the observation, in addition to their differences with the calculated ones. These experimental energy levels, with the transition moment parameters were used to generate a line-list of 2451 transitions, reproducing the observed spectrum. This list is given as Supplementary Material.  相似文献   

4.
The absorption spectrum of ozone, 16O3, has been recorded in the 5980-6220 cm−1 region by high sensitivity CW-Cavity Ring Down Spectroscopy (αmin ∼ 3 × 10−10 cm−1). This study extends a first investigation with the same experimental set-up limited to the 6030-6090 cm−1 spectral region [M.-R. De Backer-Barilly, A. Barbe, Vl.G. Tyuterev, D. Romanini, B. Moeskops, A. Campargue, J. Mol. Struct. 780-781 (2006) 225-233] where the analysis of two A-type bands was reported, using FTS spectra for complementary information. The spectral extension of the recordings allows not only to enlarge considerably the observed transitions of these two bands, but more importantly, to assign four new bands: the 3ν2 + 4ν3,5ν1 + ν2 and ν1 + 2ν2 + 4ν3 B-type bands which were considered as dark in our previous report and the 3ν1 + 3ν2 + ν3 A-type band. The high mixing of the observed states approaching the dissociation limit, leads to the breakdown of the polyad structure and ambiguities in the vibrational labelling which are discussed. Finally, 1789 transitions were assigned, and a suitable Hamiltonian model allows reproducing correctly the observations for five of the six observed bands. The list of 1004 experimentally determined energy levels is provided. The determined effective Hamiltonian and transition moment operators were used to generate a list of 5338 transitions given as Supplementary Material. It is interesting to note that the d5 parameter of the effective transition moment is of great importance to account for the observed intensities of the B-type bands.  相似文献   

5.
The absorption spectrum of ozone, 16O3, has been recorded in the 5903-5960 cm−1 region by high sensitivity CW-cavity ring down spectroscopy (αmin ∼ 5 × 10−10 cm−1). The ν1 + 3ν2 + 3ν3 and 4ν1 + ν2 + ν3 A-type bands centred at 5919.15 and 5947.07 cm−1 were newly observed. A set of 173 and 168 energy levels could be experimentally determined for the (1 3 3) and (4 1 1) states, respectively. Except for a few Ka = 5 levels of the (4 1 1) state, the rotational structure of the two states was found mostly unperturbed. The spectroscopic parameters were determined from a fit of the corresponding line positions by considering the (1 3 3) and (4 1 1) states as isolated. The determined effective Hamiltonian and transition moment operators were used to generate a list of 785 transitions given as Supplementary Material.  相似文献   

6.
The absorption spectrum of ozone, 16O3, has been recorded by CW-cavity ring down spectroscopy in the 6625-6830 cm−1 region. The typical sensitivity of these recordings (αmin ∼ 3 × 10−10 cm−1) allows observing very weak transitions with intensity down to 2 × 10−28 cm/molecule. 483 and 299 transitions have been assigned to the 2ν1 + 3ν2 + 3ν3A-type band and to the 2ν1 + 4ν2 + 2ν3B-type band, respectively, which are the highest frequency bands of ozone recorded so far under high resolution. Rovibrational transitions with J and Ka values up to 46 and 12, respectively, could be assigned. Despite well-known difficulties to correctly reproduce the energy levels not far from the dissociation limit, it was possible to determine the parameters of an effective Hamiltonian which includes six vibrational states, four of them being dark states. The line positions analysis led to an rms deviation of 8.5 × 10−3 cm−1 while the experimental line intensities could be satisfactorily reproduced. Additional experiments in the 5970-6021 cm−1 region allows detecting the (233) ← (010) hot band reaching the same upper state as the preceding cold band. From the effective parameters of the (233) state just determined and those of the (010) level available in the literature, 329 transitions could be assigned and used for a further refinement of the rovibrational parameters of the effective Hamiltonian leading to a value of 7.6 × 10−3 cm−1 for the global rms deviation. The complete list of the experimentally determined rovibrational energy levels of the (233), (242), and (520) states is given. The determined effective Hamiltonian and transition moment operators allowed calculating a line list (intensity cut off of 10−28 cm/molecule at 296 K), available as Supplementary material for the 6590-6860 and 5916-6021 cm−1 regions. The integrated band strength values are 1.75 × 10−24 and 4.78 × 10−25 cm/molecule at 296 K for the 2ν1 + 3ν2 + 3ν3A-type band and to the 2ν1 + 4ν2 + 2ν3B-type band, respectively, while the band intensity value of the (233) ← (010) is estimated to be 1.03 × 10−24 cm/molecule.  相似文献   

7.
The infrared spectrum of CH3D from 3250 to 3700 cm−1 was studied for the first time to assign transitions involving the ν2 + ν3, ν2 + ν5, ν2 + ν6, ν3 + 2ν6 and 3ν6 vibrational states. Line positions and intensities were measured at 0.011 cm−1 resolution using Fourier transform spectra recorded at Kitt Peak with isotopically enriched samples. Some 2852 line positions (involving over 900 upper state levels) and 874 line intensities were reproduced with RMS values of 0.0009 cm−1 and 4.6%, respectively. The strongest bands were found to be ν2 + ν3 at 3499.7 cm−1 and ν2 + ν6 at 3342.5 cm−1 with integrated strengths, respectively, of 8.17 × 10−20 and 2.44 × 10−20 (cm−1/molecule · cm−2) at 296 K (for 100% CH3D). The effective Hamiltonian was expressed in terms of irreducible tensor operators and adapted to symmetric top molecules. Its present configuration in the MIRS package permitted simultaneous consideration of the four lowest polyads of CH3D: the Ground State (G.S.), the Triad from 6.3 to 9.5 μm, the Nonad from 3.1 to 4.8 μm and now the Enneadecad (19 bands) from 2.2 to 3.1 μm. The CH3D line parameters for this interval were calculated to create a new database for the 3 μm region.  相似文献   

8.
Continuing the systematic study of ozone high-resolution infrared spectra, we present in this paper the measurements and analyses of line positions for the 18O16O18O isotopomer. In the range 900-5000 cm−1, corresponding to the observed spectra, 15 bands are analysed: ν1, ν3, ν2+ν3, ν1+ν2, 2ν3, ν1+ν3, 2ν1, ν2+2ν3, ν1+ν2+ν3, 3ν3, 2ν1+ν3, ν2+3ν3, ν1+3ν3, ν1+ν2+3ν3, and 5ν3. As in the case of 16O3, 18O3, and 16O18O16O, the analysis of these bands is performed using effective rovibrational Hamiltonians for nine polyads of interacting upper vibrational states. To correctly reproduce all observed transitions, we have to account for resonance perturbations due to 13 “Dark” states: (0 3 0), (0 4 0), (2 1 0), (0 3 1), (1 0 2), (0 4 1), (1 1 2), (3 1 0), (0 3 2), (0 0 4), (3 2 0), (0 1 4), and (0 4 2). We present the range of observed transitions, the results for spectroscopic parameters (vibrational energy levels, rotational and centrifugal distortion constants, and resonance coupling parameters), as well as the statistics for rovibrational energy levels, calculations and measurements. A comparison of observed band centres with those predicted from an isotopically invariant potential function is discussed. The RMS deviation between predicted and directly observed band centres is ≈0.03 cm−1 up to 3000 and ≈0.25 cm−1 for all 16 bands up to 5000 cm−1.  相似文献   

9.
The absorption spectrum of acetylene-d has been observed at high resolution between 6470 and 6630 cm−1 using an external cavity diode laser. Three cold bands have been observed: the strong 2ν1 band, the weaker ν1 + ν2 + 2ν5 band, and the (ν1 + ν3 + ν5)1 band, which gains its intensity through Coriolis resonance with 2ν1. Centers of unblended lines are determined with an accuracy of approximately 10 MHz.  相似文献   

10.
The absorption spectrum of carbon dioxide has been studied between 8800 and 9530 cm−1 by intracavity laser absorption spectroscopy based on a vertical external cavity surface emitting lasers (VeCSEL). Previous laboratory spectra at high resolution were nearly absent in the considered spectral region. Experiments were carried with natural carbon dioxide and with 13C enriched carbon dioxide leading to the determination of the rovibrational parameters of a total of 15 very weak vibrational transitions, including two bands of the 16O13C18O isotopologue. The observed transitions are assigned to components of the 2ν1 + 3ν3 triad and of the much weaker 5ν1 + ν3 hexad. Our measured line positions are found in excellent agreement with the predictions of the effective Hamiltonians developed for 12C16O2 and 13C16O2 but significant deviations were evidenced for the 16O13C18O minor isotopologue. The relative band intensities within each polyad are also discussed on the basis of the effective Hamiltonian model.  相似文献   

11.
The absorption spectrum of 18O enriched water has been recorded by continuous wave cavity ring down spectroscopy between 5905.7 and 6725.7 cm−1 using a series of fibred DFB lasers. The investigated spectral region corresponds to the important 1.55 μm transparency window of the atmosphere where water absorption is very weak. The typical CRDS sensitivity (noise equivalent absorption of 5×10−10 cm−1) allowed for the detection of lines with intensity as low as 10−28 cm/molecule while the minimum intensity value provided by HITRAN in the considered spectral region is 1.7×10−24 cm/molecule. The line parameters were retrieved with the help of an interactive least squares multi-lines fitting program assuming a Voigt function as line profile. Overall, 4510 absorption lines belonging to the H218O, H216O, HD18O, HD16O and H217O water isotopologues were measured. Their intensities range between 3×10−29 and 5×10−23 cm/molecule at 296 K and the typical accuracy on the line positions is 1×10−3 cm−1. 2074 of the observed lines attributed to H218O, HD18O and H217O are reported for the first time. The transitions were assigned on the basis of variational calculations resulting in 288, 135 and 38 newly determined rovibrational energy levels for the H218O, HD18O and H217O isotopologues, respectively. The new data set includes the band origin of the 4ν2 bending overtone of H218O at 6110.4239 cm−1 and rovibrational levels corresponding to J and Ka values up to 18 and 12, respectively, for the strongest bands of H218O: 4ν2, ν1+2ν2, 2ν2+ν3, 2ν1, ν1+ν3, and ν2+ν3. The obtained experimental results have been compared to the spectroscopic parameters provided by the HITRAN database and to the recent IUPAC critical review of the rovibrational spectrum of H218O and H217O as well as to variational calculations. Large discrepancies between the 4ν2 variationally predicted and experimental intensities have been evidenced for the H218O and H216O molecules.  相似文献   

12.
Over 8000 line positions and intensities of phosphine (PH3) at 3 μm have been measured at 0.0115 cm−1 resolution with the McMath-Pierce Fourier Transform spectrometer at Kitt Peak. The observed line intensities ranged from 4.13 × 10−6 to 4.69 × 10−2 cm−2 atm−1 at 296 K, for line positions between 2724.477 and 3601.652 cm−1. This region spans eight interacting vibrational states: 3ν2 (2940.8 cm−1), 2ν2 + ν4 (3085.6 cm−1), ν2 + 2ν4 (3214.9 cm−1), ν1 + ν2 (3307.6 cm−1), ν2 + ν3 (3310.5 cm−1), 3ν4 (∼3345 cm−1), ν1 + ν4 (3426.9 cm−1), and ν3 + ν4 (3432.9 cm−1). Assignments have been determined for all the bands except 3ν4 (a weak band in a highly congested area) for a total of 4232 transitions. The total integrated intensity for this region is 5.70 cm−2 atm−1 near 296 K, and assigned lines account for 79% of the observed absorption. The two strongest bands in the region are ν1 + ν4 and ν3 + ν4 with band strengths at 296 K of 1.61 and 2.01 cm−2 atm−1, respectively. An empirical database of PH3 line parameters (positions, intensities, and assignments) is now available. Lower state energies (corresponding to assignments from this study) and line widths from the literature are included; default values are used for unassigned features.  相似文献   

13.
Water vapor infrared spectra have been measured using the Bruker IFS 120 HR Fourier transform spectrometer at the Physikalisch-Chemisches Institut of the Justus-Liebig-Universität Giessen. Spectra were recorded at pressure-broadening-limited resolution and at room temperature in the range of 1900-6600 cm−1. The use of fully evacuated transfer optics and a White-type multireflection cell made it possible to obtain pressure×pathlength products up to 31.27 mbar×288.5 m. These spectra have previously been used to determine experimental values of rovibrational line positions and upper energy levels of the 2ν2, ν1, and ν3 bands [Mikhailenko SN, Tyuterev VlG, Keppler KA, Winnewisser BP, Winnewisser M, Mellau G, et. al. The 2ν2 band of water: analysis of new FTS measurements and high-Ka transitions and energy levels. J Mol Spectrosc 1997;184: 330-49] and of the 3ν2, ν1+ν2, and ν2+ν3 bands [Mikhailenko SN, Tyuterev VlG, Starikov VI, Albert KK, Winnewisser BP, Winnewisser M, et al. Water spectra in the region 4200-6250 cm−1, extended analysis of ν1+ν2, ν2+ν3, and 3ν2 bands and confirmation of highly excited states from flame spectra and from atmospheric long-path observations. J. Mol. Spectrosc. 2002; 213: 91-121].This work presents the intensities of 3769 lines for the weak and medium transitions in the spectral range indicated. These data provide an independent source of experimental information which is complementary to intensity data available in the literature and can thus help to evaluate experimental errors and the reliability of these spectral line parameters.  相似文献   

14.
The high resolution absorption spectrum of methane has been recorded at liquid nitrogen temperature by differential absorption spectroscopy between 6717 and 7351 cm−1 (1.49-1.36 μm) using a cryogenic cell and a series of distributed feed back (DFB) diode lasers. The investigated spectral region corresponds to the very congested low energy part of the icosad for which the HITRAN database provides neither rovibrational assignments nor the lower state energies. The positions and strengths at 81 K of 9389 transitions were obtained from the spectrum analysis. The minimum value of the measured line intensities (at 81 K) is on the order of 10−26 cm/molecule. From the variation of the line strength between 81 K and 296 K, the low energy values of a total of 4646 transitions were determined. They represent 79.4% and 68.4% of the total absorbance in the region at 81 and 296 K, respectively, and include 28 transitions assigned to the ν2+4ν4 band near 6765 cm−1. The reliability of the method based on the association of lines with coinciding centers in the 81 K and 296 K spectra is discussed. The results of the present analysis have been combined with previously analyzed high energy part of the icosad dominated by the ν2+2ν3 band near 7510 cm−1. The line list for the whole icosad (6717-7655 cm−1) consists of 12 865 transitions at 81 K.  相似文献   

15.
The infrared spectrum of DNO3 (deuterated nitric acid) was recorded at high resolution (0.0027 cm−1) in the 700-1400 cm−1 region on a Bruker IFS 120 HR Fourier transform spectrometer. The analysis of the ν5 band of DNO3 centred at 887.657 cm-1 which is mostly an A-type band, was performed making use of the ground state parameters achieved by Drouin et al. [Drouin BJ, Miller CE, Fry JL, Petkie DT, Helminger P, Medvedev IR. J Mol Spectrosc 2006;236:29-34]. The ν5 fundamental band is strongly perturbed because of the existence of the ν7+ν9 dark combination band at 882.21  cm-1. The 51 and 7191 energy levels of DNO3 are coupled through A and B type Coriolis resonances, and as a consequence, numerous lines from the ν7+ν9 dark combination band could be identified also. In this way about 1070 and 75 energy levels of the 51 and 7191 vibrational states, respectively, were satisfactorily reproduced by the energy levels calculation which account for the observed resonances. A reasonable estimation of the absolute line intensities for the ν5 band of DNO3 was performed using the ν5 transition operator from H14NO3. The spectrum also features the ν5+ν6ν6, ν5+ν7ν7 and ν5+ν9−ν9 hot bands located at 881.03, 882.61 and 884.45 cm−1, respectively.  相似文献   

16.
Very weak water vapor absorption lines have been investigated by intracavity laser absorption spectroscopy (ICLAS) in the 11 335-11 947 and 12 336-12 843 cm−1 spectral regions dominated by the ν1 + 3ν2 + ν3 and ν2 + 3ν3 bands, respectively. A detectivity on the order of αmin ∼ 10−9 cm−1 was achieved with an ICLAS spectrometer based on a Ti: Sapphire laser. It allowed detecting transitions with an intensity down to 5 × 10−28 cm/molecule which is about 10 times lower than the weakest line intensities previously detected in the considered region. A line list corresponding to 1281 transitions with intensity lower than 5 × 10−26 cm/molecule has been generated. A detailed comparison with the line lists provided by the HITRAN database and by recent investigations by Fourier transform spectroscopy associated with very long multi pass cell is presented. The rovibrational assignment performed on the basis of the ab initio calculations of Schwenke and Partridge, has allowed for determining 176 new energy levels belonging to a total of 16 vibrational states.  相似文献   

17.
Photoluminescence spectra of Sm2+-doped BaBr2 have been measured under hydrostatic pressures up to 17 GPa at room temperature. In the low pressure range a red-shift of the broad 5d-4f transition of −145 cm−1/GPa is observed. From 5 to 8 GPa a phase mixture of the initial orthorhombic phase and the high-pressure monoclinic phase gives rise to two 5d-4f bands, which are strongly overlapping. Above 8 GPa the crystal is completely transformed to its high-pressure phase where two different Sm2+ sites exist, but only one broad 5d-4f transition is detected. It exhibits a red-shift of −36 cm−1/GPa. In addition, the line shifts of the 5D07FJ (J=0, 1, 2) transitions are investigated. Linear shifts of −19 cm−1/GPa for J=0, 2 and of −13 cm−1/GPa for J=1 are observed in the pressure range from 0 to 5 GPa.  相似文献   

18.
The infrared spectrum of the PD3 molecule has been measured in the region of the first stretching overtone bands on a Fourier transform spectrometer with a resolution of 0.0068 cm−1 and analyzed for the first time. More than 800 transitions with Jmax=15 have been assigned to the bands 2ν1 and ν1+ν3. An effective Hamiltonian was used which takes into account both the presence of resonance interactions between the states (2 0 0 0) and (1 0 1 0), and interactions of these with the third stretching vibrational state of the v=2 polyad, (0 0 2 0). A set of 44 spectroscopic parameters is obtained from the fit. This reproduces the 305 initial “experimental” upper rovibrational energies with an rms=0.0015 cm−1.  相似文献   

19.
Absorption spectra of HDO/D2O mixtures recorded in the 5600-8800 cm−1 region with a total pressure of water from 13 up to 18 hPa and an absorption path length of 600 m have been analyzed in order to obtain new spectroscopic data for HD18O and D218O. In spite of the low natural 18O concentration (about 2×10−3 with respect to the 16O one), about 1100 transitions belonging to HD18O and more than 280 transitions belonging to D218O have been assigned. Most of the D218O transitions belong to the ν1+ν2+ν3 and 2ν1+ν3 bands. Sets of energy levels for seven vibrational states of D218O and four states of HD18O are reported for the first time. The comparison of the experimental data with the calculated values based on Partridge-Schwenke global variational calculations is discussed.  相似文献   

20.
The five lowest doubly excited deformational vibrational bands ν4 + ν6, 2ν6, ν3 + ν4, ν3 + ν6, and 2ν3 of PH2D have been recorded for the first time using a Bruker 120 HR interferometer with a resolution 0.0033 cm−1 and analysed. Some transitions belonging to a very weak band 2ν4 have been also assigned. From the fit 24 and 86, respectively, diagonal and resonance interaction parameters were obtained which reproduce 1089 upper energy levels obtained from more than 4600 assigned transitions with the rms deviation of 0.00059 cm−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号