首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vibrational structure of the electronic state of C3 in the region 26 000-30 775 cm−1 has been re-examined, using laser excitation spectra of jet-cooled molecules. Rotational constants and vibrational energies have been determined for over 60 previously-unreported vibronic levels; a number of other levels have been re-assigned. The vibrational structure is complicated by interactions between levels of the upper and lower Born-Oppenheimer components of the state, and by the effects of the double minimum potential in the Q3 coordinate, recognized by Izuha and Yamanouchi [16]. The present work shows that there is also strong anharmonic resonance between the overtones of the ν1 and ν3 vibrations. For instance, the levels 2 1+ 1 and 0 1 + 3 are nearly degenerate in zero order, but as a result of the resonance they give rise to two levels 139 cm−1 apart, centered about the expected position of the 2 1+ 1 level. With these irregularities recognized, every observed vibrational level up to 30 000 cm−1 (a vibrational energy of over 5000 cm−1) can now be assigned. A vibronic level at 30181.4 cm−1, which has a much lower B′ rotational constant than nearby levels of the state, possibly represents the onset of vibronic perturbations by the electronic state; this state is so far unknown, but is predicted by the ab initio calculations of Ahmed et al. [36].  相似文献   

2.
One-dimensional defect structures of closed-packed adlayers of iodine on Pt(1 0 0) were studied with scanning tunneling microscopy (STM). On the terraces of the Pt(1 0 0) surface we observed rotational domains with line defects running in [0 1 0] directions, in coexistence with nearly defect-free domains. In addition to these prevailing line defects (A-defects) with a local coverage lower than that of a defect-free surface, we report on much less frequently observed line defects with higher local coverages (B- and C-defects). The strong dependence of the concentration of these defects on the adsorption temperature is governed by the decrease of the overall iodine coverage with increasing temperature. Iodine adsorption at ∼1100 K leads to self-organization of A-defects in quasi-periodic arrangements. The relevance of these defects as important structural elements of commensurate superstructures of iodine on Pt(1 0 0) is stressed.  相似文献   

3.
The oxidation of aniline at Cu(1 1 0) surfaces at 290 K has been studied by XPS and STM. A single chemisorbed product, assigned to a phenyl imide (C6H5N(a)), is formed together with water which desorbs. Reaction with preadsorbed oxygen results in a maximum surface concentration of phenyl imide of 2.8 × 1014 mol cm−2 and a surface dominated by domains of three structures described by , and unit meshes. However, concentrations of phenyl imide of up to 3.3 × 1014 mol cm−2 were obtained from the coadsorption of aniline and dioxygen (300:1 mixture) resulting in a highly ordered biphasic structure with and domains. Comparison of the STM and XPS data shows that only half the phenyl imides at the surface are imaged. Pi-stacking of the phenyl rings is proposed to account for this observation.  相似文献   

4.
5.
We have investigated modifications of sapphire (0 0 0 1) surface with and without coating, induced by a single laser pulse with a 1054 nm wavelength, 2.2 s duration, 7.75 mm spot and energy of 20-110 J. A holographic optical element was used for smoothing the drive beam spatially, but it induced small hotspots which initiated damage on the uncoated and coated surfaces. The individual damage effects of hotspots became less pronounced at high fluences. Due to high temperature and elevated non-hydrostatic stresses upon laser irradiation, damage occurred as fracture, spallation, basal and rhombohedral twinning, melting, vitrification, the formation of nanocrystalline phases, and solid-solid phase transition. The extent of damage increased with laser fluences. The formation of regular linear patterns with three-fold symmetry ( directions) upon fracture was due to rhombohedral twinning. Nanocrystalline -Al2O3 formed possibly from vapor deposition on the coated surface and manifested linear, triangular and spiral growth patterns. Glass and minor amounts of -Al2O3 also formed from rapid quenching of the melt on this side. The - to -Al2O3 transition was observed on the uncoated surface in some partially spalled alumina, presumably caused by shearing. The nominal threshold for laser-induced damage is about 47 J cm−2 for these laser pulses, and it is about 94 J cm−2 at the hotspots.  相似文献   

6.
The high-resolution infrared spectra of DCF3 were reinvestigated in the ν6 fundamental band region near 500 cm−1 and around 1000 cm−1 with the aim to assign and analyze the overtone level of the asymmetric CF3 bending vibration v6 = 2.The present paper reports on the first study of both its sublevels (A1 and E corresponding to l = 0 and ±2, respectively) through the high-resolution analysis of the overtone band and the hot and bands.The well-known “loop method”, applied to and , yielded ground state energy differences Δ(KJ) = E0(KJ) − E0(K − 3,J) for the range of K = 6 to 30.In the final fitting of molecular parameters, we used the strategy of fitting all upper state data together with the ground state rotational transitions.This is equivalent to that calculating separately the and coefficients of the K-dependent part of the ground state energy terms from the combination loops.All rotational constants of the ground state up to sextic order could be refined in the calculation.This led to a very accurate determination of C0 = 0.18924413(25) cm−1, , and also .In the course of analyzing simultaneously the overtone band together with the and ν6 bands, the original assignment of the fundamental ν6 band [Bürger et al., J. Mol. Spectrosc. 182 (1997) 34-49] was found to be incompatible with the present one. Assignments of the (k + 1, l6 = +1)/(k − 1,l6 = −1) levels had to be interchanged, which changed the value of 6 = −0.14198768(26) cm−1 and the sign of the combination of constants C − B −  in the v6 = 1 level to a negative value.  相似文献   

7.
8.
Rotationally resolved ultrahigh-resolution fluorescence excitation spectra of the S1 ← S0 transition of dibenzofuran have been observed using the technique of crossing a collimated molecular beam and the single-mode UV laser beam. 3291 rotational lines of the band and 3047 rotational lines of the band have been assigned. The band has been found to be a b-type transition, in which the transition moment is along the twofold symmetry axis of this molecule, and only the ΔKa = ± 1 transitions were observed. The excited state is identified to be the S11A1(ππ) state. In contrast with this, the band has been found to be an a-type transition in which the transition moment is along the long axis in plane. It indicates that the intensity of this vibronic band arises from vibronic coupling with the S21B2(ππ) state. We determined the accurate rotational constants and the molecule have been shown to be planar both in the ground and excited states.  相似文献   

9.
The absorption spectra of jet-cooled AsH2 radicals were recorded in the wavelength range of 435-510 nm by cavity ringdown spectroscopy. The AsH2 radicals were produced by pulsed DC discharge in a molecular beam of a mixture of AsH3, SF6, and argon. Seven vibronic bands with fine rotational structures have been identified and assigned as the , , and (n = 1-3) bands of the electronic transition. Based on the previous studies of AsH2 radical, rotational assignments and rotational term values for each band were obtained, and the molecular parameters including vibrational constants, rotational constants, centrifugal distortion constants, and spin-rotation interaction constants were also determined.  相似文献   

10.
We report on scanning tunneling microscopy results of thin dysprosium-silicide layers formed on Si(1 1 1). In the submonolayer regime, both a and a 5 × 2 superstructure were found. Based on images taken at different tunneling conditions, a structure model could be developed for the superstructure. For one monolayer, a 1 × 1 superstructure based on hexagonal DySi2 was observed, while several monolayers thick films are characterized by a superstructure from Dy3Si5.  相似文献   

11.
G.L. Beltramo 《Surface science》2007,601(8):1876-1885
In this paper we introduce a new experimental approach to determine the potential dependence of the step line tension on metal electrodes in contact with an electrolyte: (0 0 1) and (1 1 n) surfaces of single crystal gold electrodes were investigated by impedance spectroscopy in solutions containing weakly adsorbing anions, such as , F and . Within the limits of error the shift in the potential of zero charge is proportional to the step density of the vicinal surfaces indicative of a well-defined dipole moment per step length. The dipole moments per step atom are 6.8 ± 0.8, 5.2 ± 0.4, 5.8 ± 0.5 × 10−3 eÅ for , , and F containing electrolytes, respectively. Using the values for the pzc and the potential dependence of the capacitance curves, the potential dependence of the surface tension of the vicinal surfaces is determined. The line tension of the steps is then calculated from the difference between the surface tension of the stepped and the step free surface. Our results represent the first experimental confirmation of a recent theoretical model proposing that in absence of specifically adsorbed ions the step line tension should decrease (roughly linear) with potential.  相似文献   

12.
Various iron-silicides are grown on clean Si(0 0 1) surfaces by solid phase epitaxy, a process which involves the deposition of iron and subsequent annealing [6]. Among them, we studied the structure of three-dimensional (3D) elongated islands, which are the major silicide type produced at lower Fe coverage (∼1 monolayer) and ?500-600 °C annealing. We applied a newly developed method of azimuth-scan reflection high-energy electron diffraction (RHEED) to obtain 3D reciprocal-lattice mapping. We succeeded in discriminating an α-FeSi2 phase from controversial bulk phases of the islands, and we were also able to determine the orientation relation as and , where the lattice mismatches are −1% in direction and +34% in direction. The attenuation of the incident electron beam along the length direction of the islands leads to extremely weak spots in the RHEED pattern. We emphasize that such an analysis of the reciprocal-lattice mapping is also useful in studying other 3D island structures. Using scanning tunneling microscopy, we showed that the island’s elongated directions are perpendicular to the dimer rows of the substrate located under the islands. The islands are located near the SB step edges. The elongation lengths of the islands are almost the same as the widths of the Si substrate terraces. We discussed the formation mechanism of the 3D-elongated islands. From an atomic image of the facet and edge of a 3D-elongated island, we proposed an atomic-structure model of the island facet and edge: a Si adatom on the hollow site of four Si atoms of an unit, with ordering in the direction of the elongation, forming an facet locally.  相似文献   

13.
The adsorption of l-serine on Cu(0 0 1) surface at 310 K was studied by scanning tunneling microscope (STM). l-serine molecules on the Cu(0 0 1) initially formed a domain of thick lines with a order structure along the direction on the terraces regardless of the coverage of serine. The thick lines were partly replaced by thin line along the direction, and completely disappeared in 2 h. It is considered that in these structures hydrogen bonds involved in hydroxymethyl group between adsorbates play some role in addition to intermolecular hydrogen bond between a hydrogen atom of amino group and an oxygen atom of carboxy group for alanine adsorption.  相似文献   

14.
We have studied the influence of CO on the adsorption of benzene on the Co(0 0 0 1) surface using LEED, XPS, TDS and work function measurements. CO was found to reduce the benzene adsorption, but even at saturation CO exposure no complete blocking was observed. Thermal desorption of the coadsorbed layer featured CO and H2 peaks indicating partial dehydrogenation of benzene and retaining of the CO bond. Ordered LEED structures were found with all coverages: Pre-adsorption of CO led to patterns already seen for pure carbon monoxide adsorption. Pre-adsorption of benzene showed the known structure of pure benzene also with small CO exposures, but higher CO exposures yielded a mixture of and patterns.  相似文献   

15.
Room temperature deposition of Sn on Cu(1 0 0) gives rise to a rich variety of surface reconstructions in the submonolayer coverage range. In this work, we report a detailed investigation on the phases appearing and their temperature stability range by using low-energy electron diffraction and surface X-ray diffraction. Previously reported reconstructions in the submonolayer range are p(2 × 2) (for 0.2 ML), p(2 × 6) (for 0.33 ML), ()R45° (for 0.5 ML), and c(4 × 4) (for 0.65 ML). We find a new phase with a structure for a coverage of 0.45 ML. Furthermore, we analyze the temperature stability of all phases. We find that two phases exhibit a temperature induced reversible phase transition: the ()R45° phase becomes ()R45° phase above 360 K, and the new phase becomes p(2 × 2) also above 360 K. The origin of these two-phase transitions is discussed.  相似文献   

16.
M. Gurnett 《Surface science》2009,603(4):727-735
In this article we report our findings on the electronic structure of the Li induced Ge(1 1 1)-3 × 1 reconstruction as determined by angle-resolved ultraviolet photoelectron spectroscopy (ARUPS) and core-level spectroscopy using synchrotron radiation. The results are compared to the theoretical honeycomb-chain-channel (HCC) model for the 3 × 1 reconstruction as calculated using density functional theory (DFT). ARUPS measurements were performed in both the and directions of the 1 × 1 surface Brillouin zone at photon energies of 17 and 21.2 eV. Three surface related states were observed in the direction. In the direction, at least two surface states were seen. The calculated band structure using the single-domain HCC model for Li/Ge(1 1 1)-3 × 1 was in good agreement with experiment, allowing for the determination of the origin of the experimentally observed surface states. In the Ge 3d core-level spectra, two surface related components were identified, both at lower binding energy with respect to the Ge 3d bulk peak. Our DFT calculations of the surface core-level shifts were found to be in fair agreement with the experimental results. Finally, in contrast to the Li/Si(1 1 1)-3 × 1 case, no double bond between Ge atoms in the top layer was found.  相似文献   

17.
The vapor-phase absorption spectrum of oxalyl chloride in the 3000-4180 Å region has been re-examined at high resolution. Singlet-singlet and singlet-triplet electronic transitions of the trans-conformer found in the spectrum are in agreement with earlier works [W.J. Balfour, G.W. King, J. Mol. Spectrosc. 26 (1968) 384-397; ibid. 27 (1968) 432-442]. Torsion levels of trans-oxalyl chloride in the ground and excited and states were found for the first time. Ab initio calculations of structures for conformers of oxalyl chloride in the ground and lowest excited electronic states explain the absence of second conformer transitions in the vibronic absorption spectrum.  相似文献   

18.
A tunable diode laser spectrometer has been employed to examine the unknown overtone absorption lines of NH3 around (760 nm). The spectrometer sources are commercially available heterostructure AlGaAs tunable diode lasers operating in the “free-running” mode. The detection of the lines has been possible by the use of the wavelength modulation spectroscopy and the second harmonic detection technique. A special algorithm has been used in order to fit the highly modulated absorption lines. The weakest observed resonances have absorption cross sections on the order of ?/molecule or ?/amagat. For some of the more intense lines self-, air-, N2-, He- and H2-broadening coefficients have been obtained at room temperature and also some shifting coefficients have been measured.  相似文献   

19.
Using the ab initio Hartree-Fock crystal orbital method in its linear combination of atomic orbitals form we have calculated the band structures of poly(-) and poly(-). Here, besides the nucleotide bases, the sugar and phosphate parts of the nucleotide were also taken into account together with their first water shell and Na+ ions. We use the notation with a tilde above the abbreviation of a base for the whole nucleotide; for instance poly() means a guanine base with the deoxyribose and PO4 groups to which it is bound. The obtained band structures were compared with previous single chain calculations as well as with the earlier poly(-) and poly(-) calculation without water but in the presence of counterions. One finds that all the bands of poly(-) and poly(-) are shifted considerably upwards as compared to the previous single chain results (poly(), poly(), poly() and poly()). This effect is explained by the ∼0.2e charge transfer from the sugars of both chains to the nucleotide bases. The fundamental gaps between the nucleotide base-type highest filled and lowest unfilled bands are decreased in both cases by 1-3 eV, because the valence bands are purine-type and the conduction bands pyrimidine-type, respectively, while in the case of single homopolynucleotides they belong to the same base. We also pointed out that the LUMO is mainly Na+-like in both investigated cases and several unoccupied bands (belonging to the Na+ ions, the phosphate group and the water molecules) can be found between this and the first unoccupied pyrimidine-like empty band.  相似文献   

20.
The thickness-dependent electronic structures of Dy silicide films grown on a Si(1 1 1) surface have been investigated by angle-resolved photoelectron spectroscopy. Two (1×1) periodic bands, both of them cross the Fermi level, have been observed in the silicide films formed by Dy coverages of 1.0 monolayer and below, and more than five () periodic bands have been observed in thicker films. Taking the () periodic structure of Dy atoms in the submonolayer silicide film into account, the periodicity of the two metallic bands indicate that they mainly originate from the orbitals of Si atoms, which form a (1×1) structure. Of the () periodic bands observed in thick films, four of them are well explained by the folding of the (1×1) bands into a () periodicity. Regarding the other band, the three () periodic bands would originate from the electronic states related to the inner Si layers that form a () structure, and the one observed in the 3.0 ML film only might originate from the electron located at the interface between bulk Si and the Dy silicide film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号