首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peptide beta-hairpin formation is facilitated by centrally positioned D-Pro-Xxx segments. The synthetic peptides Boc-Leu-Phe-Val-D-Pro-Ac(6)c-Leu-Phe-Val-OMe (1) and Boc-Leu-Phe-Val-D-Pro-Ac(8)c-Leu-Phe-Val-OMe (2) were synthesized in order to explore the role of bulky 1-aminocycloalkane-1-carboxylic acid residues (Ac(n)c, where n is the number of carbon atoms in the ring), at the i+2 position of the nucleating beta turn in peptide beta hairpins. Peptides 1 and 2 crystallize in the monoclinic space group P2(1) with two molecules in the asymmetric unit. The crystal structures of 1 and 2 provide conformational parameters for four peptide hairpin molecules. In all cases, the central segments adopts a type II' beta-turn conformation, and three of the four possible cross-strand hydrogen bonds are observed. Fraying of the hairpins at the termini is accompanied by the observation of NHpi interaction between the Leu(1)NH group and Phe(7) aromatic group. Cross strand stabilizing interactions between the facing residues Phe(2) and Phe(7) are suggested by the observed orientation of aromatic rings. Anomalous far-UV CD spectra observed in solution suggest that close proximity of the Phe rings is maintained even in isolated molecules. In both peptides 1 and 2, the asymmetric unit consists of approximately orthogonal hairpins, precluding the formation of a planar beta-sheet arrangement in the solid state. Solvent molecules, one dioxane and one water in 1, three water molecules in 2, mediate peptide association. A comparison of molecular conformation and packing motifs in available beta-hairpin structures permits delineation of common features. The crystal structures of beta-hairpin peptides provide a means of visualizing different modes of beta-sheet packing, which may be relevant in developing models for aggregates of polypeptides implicated in disease situations.  相似文献   

2.
A model beta-hairpin dodecapeptide [EFGWVpGKWTIK] was designed by including a favorable D-ProGly Type II' beta-turn sequence and a Trp-zip interaction, while also incorporating a beta-strand unfavorable glycine residue in the N-terminal strand. This peptide is highly folded and monomeric in aqueous solution as determined by combined analysis with circular dichroism and 1H NMR spectroscopy. A peptide representing the folded conformation of the model beta-hairpin [cyclic(EFGWVpGKWTIKpG)] and a linear peptide representing the unfolded conformation [EFGWVPGKWTIK] yield unexpected relative deviations between the CD and 1H NMR spectroscopic results that are attributed to variations in the packing interactions of the aromatic side chains. Mutational analysis of the model beta-hairpin indicates that the Trp-zip interaction favors folding and stability relative to an alternate hydrophobic cluster between Trp and Tyr residues [EFGYVpGKWTIK]. The significance of select diagonal interactions in the model beta-hairpin was tested by rearranging the cross-strand hydrophobic interactions to provide a folded peptide [EWFGIpGKTYWK] displaying evidence of an unusual backbone conformation at the hydrophobic cluster. This unusual conformation does not appear to be a result of the glycine residue in the beta-strand, as replacement with a serine results in a peptide [EWFSIpGKTYWK] with a similar and seemingly characteristic CD spectrum. However, an alternate arrangement of hydrophobic residues with a Trp-zip interaction in a similar position to the parent beta-hairpin [EGFWVpGKWITK] results in a folded beta-hairpin conformation. The differences between side chain packing of these peptides precludes meaningful thermodynamic analysis and illustrates the caution necessary when interpreting beta-hairpin folding thermodynamics that are driven, at least in part, by aromatic cross strand interactions.  相似文献   

3.
The structural characterization in crystals of three designed decapeptides containing a double d-segment at the C-terminus is described. The crystal structures of the peptides Boc-Leu-Aib-Val-Xxx-Leu-Aib-Val-(D)Ala-(D)Leu-Aib-OMe, (Xxx = Gly 2, (D)Ala 3, Aib 4) have been determined and compared with those reported earlier for peptide 1 (Xxx = Ala) and the all l analogue Boc-Leu-Aib-Val-Ala-Leu-Aib-Val-Ala-Leu-Aib-OMe, which yielded a perfect right-handed alpha-helical structure. Peptides 1 and 2 reveal a right-handed helical segment spanning residues 1 to 7, ending in a Schellman motif with (D)Ala(8) functioning as the terminating residue. Polypeptide chain reversal occurs at residue 9, a novel feature that appears to be the consequence of a C-H.O hydrogen bond between residue 4 C(alpha)H and residue 9 CO groups. The structures of peptides 3 and 4, which lack the pro R hydrogen at the C(alpha) atom of residue 4, are dramatically different. Peptide 3 adopts a right-handed helical conformation over the 1 to 7 segment. Residues 8 and 9 adopt alpha(L) conformations forming a C-terminus type I' beta-turn, corresponding to an incipient left-handed twist of the polypeptide chain. In peptide 4, helix termination occurs at Aib(6), with residues 6 to 9 forming a left-handed helix, resulting in a structure that accommodates direct fusion of two helical segments of opposite twist. Peptides 3 and 4 provide examples of chiral residues occurring in the less favored sense of helical twist; (D)Ala(4) in peptide 3 adopts an alpha(R) conformation, while (L)Val(7) in 4 adopts an alpha(L) conformation. The structural comparison of the decapeptides reported here provides evidence for the role of specific C-H.O hydrogen bonds in stabilizing chain reversals at helix termini, which may be relevant in aligning contiguous helical and strand segments in polypeptide structures.  相似文献   

4.
Diproline segments have been advanced as templates for nucleation of folded structure in designed peptides. The conformational space available to homochiral and heterochiral diproline segments has been probed by crystallographic and NMR studies on model peptides containing L-Pro-L-Pro and D-Pro-L-Pro units. Four distinct classes of model peptides have been investigated: a) isolated D-Pro-L-Pro segments which form type II' beta-turn; b) D-Pro-L-Pro-L-Xxx sequences which form type II'-I (betaII'-I, consecutive beta-turns) turns; c) D-Pro-L-Pro-D-Xxx sequences; d) L-Pro-L-Pro-L-Xxx sequences. A total of 17 peptide crystal structures containing diproline segments are reported. Peptides of the type Piv-D-Pro-L-Pro-L-Xxx-NHMe are conformationally homogeneous, adopting consecutive beta-turn conformations. Peptides in the series Piv-D-Pro-L-Pro-D-Xxx-NHMe and Piv-L-Pro-L-Pro-L-Xxx-NHMe, display a heterogeneity of structures in crystals. A type VIa beta-turn conformation is characterized in Piv-L-Pro-L-Pro-L-Phe-OMe (18), while an example of a 5-->1 hydrogen bonded alpha-turn is observed in crystals of Piv-D-Pro-L-Pro-D-Ala-NHMe (11). An analysis of pyrrolidine conformations suggests a preferred proline puckering geometry is favored only in the case of heterochiral diproline segments. Solution NMR studies, reveal a strong conformational influence of the C-terminal Xxx residues on the structures of diproline segments. In L-Pro-L-Pro-L-Xxx sequences, the Xxx residues strongly determine the population of Pro-Pro cis conformers, with an overwhelming population of the trans form in L-Xxx=L-Ala (19).  相似文献   

5.
Isotope-edited IR spectroscopy was used to study a series of singly and doubly 13C=O-labeled beta-hairpin peptides stabilized by an Aib-Gly turn sequence. The double-labeled peptides have amide I' IR spectra that show different degrees of vibrational coupling between the 13C-labeled amides due to variations in the local geometry of the peptide structure. The single-labeled peptides provide controls to determine frequencies characteristic of the diagonal force field (FF) contributions at each position for the uncoupled 13C=O modes. Separation of diagonal FF and coupling effects on the spectra are used to explain the cross-strand labeled spectral patterns. DFT calculations based on an idealized model beta-hairpin peptide correctly predict the vibrational coupling patterns. Extending these model results by consideration of frayed ends and the hairpin conformational flexibility yields an alternate interpretation of details of the spectra. Temperature-dependent isotopically labeled IR spectra reveal differences in the thermal stabilities of the individual isotopically labeled sites. This is the first example of using an IR-based isotopic labeling technique to differentiate structural transitions at specific sites along the peptide backbone in model beta-hairpin peptides.  相似文献   

6.
The aggregation and packing of a membrane-disruptive beta-hairpin antimicrobial peptide, protegrin-1 (PG-1), in the solid state are investigated to understand its oligomerization and hydrogen-bonding propensity. Incubation of PG-1 in phosphate buffer saline produced well-ordered nanometer-scale aggregates, as indicated by 13C and 15N NMR line widths, chemical shifts, and electron microscopy. Two-dimensional 13C and 1H spin diffusion experiments using C-terminus strand and N-terminus strand labeled peptides indicate that the beta-hairpin molecules in these ordered aggregates are oriented parallel to each other with like strands lining the intermolecular interface. In comparison, disordered and lyophilized peptide samples are randomly packed with both parallel and antiparallel alignments. The PG-1 aggregates show significant immobilization of the Phe ring near the beta-turn, further supporting the structural ordering. The intermolecular packing of PG-1 found in the solid state is consistent with its oligomerization in lipid bilayers. This solid-state aggregation approach may be useful for determining the quaternary structure of peptides in general and for gaining insights into the oligomerization of antimicrobial peptides in lipid bilayers in particular.  相似文献   

7.
Incorporation of disulfide bonds to stabilize protein and peptide structures is not always a successful strategy. To advance current knowledge on the contribution of disulfide bonds to beta-hairpin stability, a previously reported beta-hairpin-forming peptide was taken as a template to design a series of Cys-containing peptides. The conformational behavior of these peptides in their oxidized, disulfide-cyclized peptides, and reduced, linear peptides, was investigated on the basis of NMR parameters: NOEs, and 1H and 13C chemical shifts. We found that the effect of disulfide bonds on beta-hairpin stability depends on its location within the beta-hairpin structure, being very small or even destabilizing when connecting two hydrogen-bonded facing residues. When the disulfide bond is linking non-hydrogen-bonded facing residues, we estimated that its contribution to the free-energy change of beta-hairpin folding is approximately -1.0 kcal mol(-1). This value is larger than those reported for most beta-hairpin-stabilizing cross-strand side-chain-side-chain interactions, except for some aromatic-aromatic interactions, in particular the Trp-Trp one, and the cation-pi interaction between Trp and the non-natural methylated Arg/Lys. As disulfide bonds are frequently used to stabilize peptide conformations, our conclusions can be useful for peptide, peptidomimetic, and protein design, and may even extend to other chemical cross-links.  相似文献   

8.
Amino acid structural propensities measured in "host-guest" model studies are often used in protein structure prediction or to choose appropriate residues in de novo protein design. While this concept has proven useful for helical structures, it is more difficult to apply successfully to beta-sheets. We have developed a cyclic beta-hairpin scaffold as a host for measurement of individual residue contributions to hairpin structural stability. Previously, we have characterized substitutions in non-backbone-hydrogen-bonded strand sites; relative stability differences measured in the cyclic host are highly predictive of changes in folding free energy for linear beta-hairpin peptides. Here, we examine the hydrogen-bonded strand positions of our host. Surprisingly, we find a large favorable contribution to stability from a valine (or isoleucine) substitution immediately preceding the C-terminal cysteine of the host peptide, but not at the cross-strand position of the host or in either strand of a folded linear beta-hairpin (trpzip peptide). Further substitutions in the peptides and NMR structural analysis indicate that the stabilizing effect of valine is general for CX(8)C cyclic hairpins and cannot be explained by particular side-chain-side-chain interactions. Instead, a localized decrease in twist of the peptide backbone on the N-terminal side of the cysteine allows the valine side chain to adopt a unique conformation that decreases the solvent accessibility of the peptide backbone. The conformation differs from the highly twisted (coiled) conformation of the trpzip hairpins and is more typical of conformations present in multistranded beta-sheets. This unexpected structural fine-tuning may explain why cyclic hairpins selected from phage-displayed libraries often have valine in the same position, preceding the C-terminal cysteine. It also emphasizes the diversity of structures accessible to beta-strands and the importance of considering not only "beta-propensity", but also hydrogen-bonding pattern and strand twist, when designing beta structures. Finally, we observe correlated, cooperative stabilization from side-chain substitutions on opposite faces of the hairpin. This suggests that cooperative folding in beta-hairpins and other small beta-structures is driven by cooperative strand-strand association.  相似文献   

9.
To probe the selectivity possible in hydrophobic clusters, we have compared the cross-strand interactions of phenylalanine (Phe) and cyclohexylalanine (Cha) in a beta-hairpin peptide. We have found a preference for self-association among the aromatic residues, which provides 0.55 kcal/mol in stability relative to Cha-Cha cross-strand pair. NMR analysis of the Phe-Phe cross-strand pair indicates that it interacts in an edge-face interaction, despite the fact that it is highly solvent-exposed. The interaction geometry as well as the enthalpic and entropic values for the peptide containing the Phe-Phe cross-strand pair suggest that the preference for self-association arises from inherent differences in the nature of aromatic and aliphatic interactions in water.  相似文献   

10.
Phage display of peptide libraries has become a powerful tool for the evolution of novel ligands that bind virtually any protein target. However, the rules governing conformational preferences in natural peptides are poorly understood, and consequently, structure-activity relationships in these molecules can be difficult to define. In an effort to simplify this process, we have investigated the structural stability of 10-residue, disulfide-constrained beta-hairpins and assessed their suitability as scaffolds for beta-turn display. Using disulfide formation as a probe, relative free energies of folding were measured for 19 peptides that differ at a one strand position. A tryptophan substitution promotes folding to a remarkable degree. NMR analysis confirms that the measured energies correlate well with the degree of beta-hairpin structure in the disulfide-cyclized peptides. Reexamination of a subset of the strand substitutions in peptides with different turn sequences reveals linear free energy relationships, indicating that turns and strand-strand interactions make independent, additive contributions to hairpin stability. Significantly, the tryptophan strand substitution is highly stabilizing with all turns tested, and peptides that display model turns or the less stable C'-C' ' turn of CD4 on this tryptophan "stem" are highly structured beta-hairpins in water. Thus, we have developed a small, structured beta-turn scaffold, containing only natural L-amino acids, that may be used to display peptide libraries of limited conformational diversity on phage.  相似文献   

11.
The effect of incorporation of a centrally positioned Ac(6)c-Xxx segment where Xxx = (L)Val/(D)Val into a host oligopeptide composed of l-amino acid residues has been investigated. Studies of four designed octapeptides Boc-Leu-Phe-Val-Ac(6)c-Xxx-Leu-Phe-Val-OMe (Xxx = (D)Val 1, (L)Val 2) Boc-Leu-Val-Val-Ac(6)c-Xxx-Leu-Val-Val-OMe (Xxx = (D)Val 3, (L)Val 4) are reported. Diagnostic nuclear Overhouse effects characteristic of hairpin conformations are observed for Xxx = (D)Val peptides (1 and 3) while continuous helical conformation characterized by sequential N(i)H ? N(i+1)H NOEs are favored for Xxx = (L)Val peptides (2 and 4) in methanol solutions. Temperature co-efficient of NH chemical shifts are in agreement with distinctly different conformational preferences upon changing the configuration of the residue at position 5. Crystal structures of peptides 2 and 4 (Xxx = (L)Val) establish helical conformations in the solid state, in agreement with the structures deduced from NMR data. The results support the design principle that centrally positioned type I β-turns may be used to nucleate helices in short peptides, while type I'β-turns can facilitate folding into β-hairpins.  相似文献   

12.
De novo designed peptides, capable of undergoing a thermally triggered beta-strand-swapped self-assembly event leading to hydrogel formation were prepared. Strand-swapping peptide 1 (SSP1) incorporates an exchangeable beta-strand domain composed of eight residues appended to a nonexchangeable beta-hairpin domain. CD shows that, at pH 9 and temperatures less than 35 degrees C, this peptide adopts a random coil conformation, rendering it soluble in aqueous solution. On heating to 37 degrees C or greater, SSP1 adopts a beta-hairpin that displays an exchangeable beta-strand region. The exchangeable strand domain participates in swapping with the exchangeable domain of another peptide, affording a strand-swapped dimer. These dimers further assemble into fibrils that define the hydrogel. A second peptide (SSP2) containing an exchangeable strand composed of only four residues was also studied. Microscopy and scattering data show that the length of the exchangeable domain directly influences the fibril nanostructure and can be used as a design element to construct either twisted (SSP1) or nontwisted (SSP2) fibril morphologies. CD, FTIR, and WAXS confirm that both peptides adopt beta-sheet secondary structure when assembled into fibrils. Fibril dimensions, as measured by TEM, AFM, and SANS indicate a fibril diameter of 6.4 nm, a height of 6.0 nm, and a pitch of 50.4 nm for the twisted SSP1 fibrils. The nontwisted SSP2 fibrils are 6.2 nm in diameter and 2.5 nm in height. Oscillatory rheology, used to measure bulk hydrogel rigidity, showed that the gel composed of the nontwisted fibrils is more mechanically rigid (517 Pa at 6 rad/s) than the gel composed of twisted fibrils (367 Pa at 6 rad/s). This work demonstrates that beta-strand-swapping can be used to fabricate biomaterials with tunable fibril nanostructure and bulk hydrogel rheological properties.  相似文献   

13.
The beta turn segment in designed peptide hairpins has been expanded by the insertion of beta-, gamma- and delta-amino acids at the i+2 position. The model octapeptides Boc-Leu-Phe-Val-DPro-Ac6c-Leu-Phe-Val-OMe (1), Boc-Leu-Phe-Val-DPro-beta3-Ac6c-Leu-Phe-Val-OMe (2), and Boc-Leu-Phe-Val-DPro-Gpn-Leu-Phe-Val-OMe (3) have been shown to adopt beta hairpin conformations in methanol by the observation of key diagnostic nuclear Overhauser effects. Boc-Leu-Val-Val-DPro-delta-Ava-Leu-Val-Val-OMe (4) adopts a beta hairpin conformation in crystals; this is stabilized by three cross-strand hydrogen bonds as demonstrated by X-ray diffraction. The canonical C10 turn in an alpha-alpha segment is expanded to C11, C12, and C13 turns in alpha-beta, alpha-gamma, and alpha-delta segments, respectively. The crystal structures of Piv-LPro-beta3-Ac6c-NHMe (5) and Boc-Ac6c-Gpn-Ac6c-OMe (6) reveal intramolecularly hydrogen-bonded C11 and C12 conformations, respectively. Computer modeling of octapeptide sequences that contain centrally positioned hybrid-turn segments, by using turn parameters derived from the structures of peptides 5 and 6, establishes the stereochemical acceptability of the beta hairpins in the cases of peptides 2 and 3. Accommodation of omega-amino acids into the turn segments is achieved by the adoption of gauche conformations around the backbone C--C bonds.  相似文献   

14.
Two antiparallel beta-strands connected by a turn make beta-hairpins an ideal model system to analyze the interactions and dynamics of beta-sheets. Site-specific conformational dynamics were studied by temperature-jump IR spectroscopy and isotopic labeling in a model based on the tryptophan zipper peptide, Trpzip2, developed by Cochran et al. (Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 5578). The modified Trpzip2C peptides have nearly identical equilibrium spectral behavior as Trpzip2 showing that they also form well-characterized beta-hairpin conformations in aqueous solution. Selective introduction of 13C=O groups on opposite strands lead to distinguishable cross-strand coupling of the labeled residues as monitored in the amide I' band. These frequency patterns reflect theoretical predictions, and the coupled 13C=O band loses intensity with increase in temperature and unfolding of the hairpin. Thermal relaxation kinetics were analyzed for unlabeled and cross-strand isotopically labeled variants. T-jumps of approximately 10 degrees C induce relaxation times of a few microseconds that decrease with increase of the peptide temperature. Differences in kinetic behavior for the loss of beta-strand and gain of disordered structure can be used to distinguish localized structure dynamics by comparison of nonlabeled and labeled amide I' components. Analysis of the data supports multistate dynamic and equilibrium behavior, but because of this process it is not possible to clearly define a folding and unfolding rate. Nonetheless, site-specific relaxation kinetics could be seen to be consistent with a hydrophobic collapse hypothesis for hairpin folding.  相似文献   

15.
Conformational analysis of peptides containing cis-3-hydroxy-d-proline (d-cis-3-Hyp) by NMR studies revealed that the 3-hydroxyl group in this amino acid plays a significant role in the overall three-dimensional structures of the peptides. When the d-cis-3-Hyp had its 3-hydroxyl group protected as the benzyl (Bn) ether, the peptide displayed a beta-hairpin structure in both CDCl(3) and DMSO-d(6). Even after the removal of the Bn group, the resulting deprotected compound retained the same structure as in the protected version in CDCl(3). However, in polar solvent DMSO-d(6), the C-terminal strand of the hydroxyl-deprotected peptide flipped to the side of the hydroxyl group, breaking the hairpin to form a pseudo beta-turn-like nine-membered ring structure involving an intramolecular hydrogen bond between LeuNH --> HypC3-OH.  相似文献   

16.
A series of positional isomeric pairs of Fmoc-protected dipeptides, Fmoc-Gly-Xxx-OY/Fmoc-Xxx-Gly-OY (Xxx=Ala, Val, Leu, Phe) and Fmoc-Ala-Xxx-OY/Fmoc-Xxx-Ala-OY (Xxx=Leu, Phe) (Fmoc=[(9-fluorenylmethyl)oxy]carbonyl) and Y=CH(3)/H), have been characterized and differentiated by both positive and negative ion electrospray ionization ion-trap tandem mass spectrometry (ESI-IT-MS(n)). In contrast to the behavior of reported unprotected dipeptide isomers which mainly produce y(1)(+) and/or a(1)(+) ions, the protonated Fmoc-Xxx-Gly-OY, Fmoc-Ala-Xxx-OY and Fmoc-Xxx-Ala-OY yield significant b(1)(+) ions. These ions are formed, presumably with stable protonated aziridinone structures. However, the peptides with Gly- at the N-terminus do not form b(1)(+) ions. The [M+H](+) ions of all the peptides undergo a McLafferty-type rearrangement followed by loss of CO(2) to form [M+H-Fmoc+H](+). The MS(3) collision-induced dissociation (CID) of these ions helps distinguish the pairs of isomeric dipeptides studied in this work. Further, negative ion MS(3) CID has also been found to be useful for differentiating these isomeric peptide acids. The MS(3) of [M-H-Fmoc+H](-) of isomeric peptide acids produce c(1)(-), z(1)(-) and y(1)(-) ions. Thus the present study of Fmoc-protected peptides provides additional information on mass spectral characterization of the dipeptides and distinguishes the positional isomers.  相似文献   

17.
A 28-residue beta-hairpin dimer (WKWK)2 with two Trp and two Lys residues on one face of each beta-sheet was shown to form a complex with single-stranded oligonucleotides at low micromolar concentrations. Each beta-hairpin of the dimer contains a cross-strand Trp-Trp pair in a diagonal orientation which has previously been shown to create a cleft for the intercalation of aromatic guests such as adenine (J. Am. Chem. Soc. 2003, 125, 9580). The beta-hairpin dimer binds 5-residue ssDNA sequences 5'-AAAAA-3', 5'-TTTTT-3', and 5'-CCCCC-3' in water with dissociation constants in the range of 12-30 muM. A weak energetic preference for binding to sequence 5'-AAAAA-3' was observed, which is believed to result from stronger stacking interactions between Trp and the adenine base. The interaction of 5'-AAAAA-3' with the Lys and Trp residues of the peptide was evident by NMR, and a 1:1 association was demonstrated. The recognition of an 11-residue ssDNA sequence occurred with a dissociation constant of 3 muM under near-physiological ionic strength and pH, demonstrating that the beta-hairpin dimer binds ssDNA as strongly as many naturally occurring proteins. The salt dependence of the interaction of the 11-residue oligonucleotide with the peptide dimer indicates that Trp-nucleobase stacking interactions contribute about -4 kcal/mol to recognition, which is much greater than the contribution of nonionic interactions in unstructured peptides containing Trp. Moreover, recognition of the ssDNA demonstrated reduced salt dependence relative to the corresponding duplex, resulting in selectivity for ssDNA under high salt conditions. Peptide (WKWK)2 is a relevant mimic of OB-fold (oligonucleotide/oligosaccharide-binding) proteins which bind ssDNA on the surface of a beta-sheet.  相似文献   

18.
The effect of gem‐dialkyl substituents on the backbone conformations of β‐amino acid residues in peptides has been investigated by using four model peptides: Boc‐Xxx‐β2,2Ac6c(1‐aminomethylcyclohexanecarboxylic acid)‐NHMe (Xxx=Leu ( 1 ), Phe ( 2 ); Boc=tert‐butyloxycarbonyl) and Boc‐Xxx‐β3,3Ac6c(1‐aminocyclohexaneacetic acid)‐NHMe (Xxx=Leu ( 3 ), Phe ( 4 )). Tetrasubstituted carbon atoms restrict the ranges of stereochemically allowed conformations about flanking single bonds. The crystal structure of Boc‐Leu‐β2,2Ac6c‐NHMe ( 1 ) established a C11 hydrogen‐bonded turn in the αβ‐hybrid sequence. The observed torsion angles (α(?≈?60°, ψ≈?30°), β(?≈?90°, θ≈60°, ψ≈?90°)) corresponded to a C11 helical turn, which was a backbone‐expanded analogue of the type III β turn in αα sequences. The crystal structure of the peptide Boc‐Phe‐β3,3Ac6c‐NHMe ( 4 ) established a C11 hydrogen‐bonded turn with distinctly different backbone torsion angles (α(?≈?60°, ψ≈120°), β(?≈60°, θ≈60°, ψ≈?60°)), which corresponded to a backbone‐expanded analogue of the type II β turn observed in αα sequences. In peptide 4 , the two molecules in the asymmetric unit adopted backbone torsion angles of opposite signs. In one of the molecules, the Phe residue adopted an unfavorable backbone conformation, with the energetic penalty being offset by a favorable aromatic interaction between proximal molecules in the crystal. NMR spectroscopy studies provided evidence for the maintenance of folded structures in solution in these αβ‐hybrid sequences.  相似文献   

19.
A model beta-hairpin peptide has been used to investigate the context-dependent contribution of cross-strand Lys-Glu interactions to hairpin stability. We have mutated two Ser-Lys interstrand pairs to Glu-Lys salt bridges, one close to the type I' Asn-Gly turn sequence (Ser6 --> Glu), and one close to the N- and C-termini (Ser15 --> Glu). Each individual interaction contributes approximately 1.2-1.3 kJ mol(-1) to stability; however, introducing the two salt bridges simultaneously produces a much larger overall contribution (-3.6 kJ mol(-1)) consistent with an important role for preorganization and cooperativity in determining the energetics of weak interactions. We compare and contrast CD and NMR data on the highly folded hairpin with the two Glu-Lys pairs to shed light on the nature of the folded state in water. We show that large cosolvent-induced changes in the CD spectrum, in contrast with the modest effects observed on Halpha chemical shifts, support a hydrophobically collapsed entropy-driven conformation in water whose stability is modulated by long-range Coulombic interactions from the Glu-Lys interactions. Cosolvent stabilizes the structure enthalpically, as is evident from CD melting profiles.  相似文献   

20.
The crystal structures of five model peptides Piv-Pro-Gly-NHMe (1), Piv-Pro-betaGly-NHMe (2), Piv-Pro-betaGly-OMe (3), Piv-Pro-deltaAva-OMe (4) and Boc-Pro-gammaAbu-OH (5) are described (Piv: pivaloyl; NHMe: N-methylamide; betaGly: beta-glycine; OMe: O-methyl ester; deltaAva: delta-aminovaleric acid; gammaAbu: gamma-aminobutyric acid). A comparison of the structures of peptides 1 and 2 illustrates the dramatic consequences upon backbone homologation in short sequences. 1 adopts a type II beta-turn conformation in the solid state, while in 2, the molecule adopts an open conformation with the beta-residue being fully extended. Piv-Pro-betaGly-OMe (3), which differs from 2 by replacement of the C-terminal NH group by an O-atom, adopts an almost identical molecular conformation and packing arrangement in the solid state. In peptide 4, the observed conformation resembles that determined for 2 and 3, with the deltaAva residue being fully extended. In peptide 5, the molecule undergoes a chain reversal, revealing a beta-turn mimetic structure stabilized by a C-H...O hydrogen bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号