首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
湿空气扩散燃烧火焰结构特性研究   总被引:4,自引:0,他引:4  
利用二维粒子成像速度仪(PIV)对钝体燃烧器中的甲烷/湿空气扩散燃烧的速度场进行测量,考察其火焰的结构特性及其内部流动状况。通过对湿空气燃烧流场与普通燃烧流场的对比分析表明,湿空气燃烧情况下,两种燃烧状态的火焰(回流燃烧火焰和中心射流主导火焰)相互转换的燃空速度比(γ)值要比普通燃烧的小;湿空气燃烧使得喷嘴后的同流空气的速度降低,空气的回流作用减弱,燃料更容易冲出回流区,火焰的稳定性能变差。  相似文献   

2.
The development of the unburned gas flow field ahead of a flame front in an obstructed channel was investigated using large eddy simulation (LES). The standard Smagorinsky–Lilly and dynamic Smagorinsky–Lilly subgrid models were used in these simulations. The geometry is essentially two-dimensional. The fence-type obstacles were placed on the top and bottom surfaces of a square cross-section channel, equally spaced along the channel length at the channel height. The laminar rollup of a vortex downstream of each obstacle, transition to turbulence, and growth of a recirculation zone between consecutive obstacles were observed in the simulations. By restricting the simulations to the early stages of the flame acceleration and by varying the domain width and domain length, the three-dimensionality of the vortex rollup process was investigated. It was found that initially the rollup process was two-dimensional and unaffected by the domain length and width. As the recirculation zone grew to fill the streamwise gap between obstacles, the length and width of the computational domain started to affect the simulation results. Three-dimensional flow structures formed within the shear layer, which was generated near the obstacle tips, and the core flow was affected by large-scale turbulence. The simulation predictions were compared to experimental schlieren images of the convection of helium tracer. The development of recirculation zones resulted in the formation of contraction and expansion regions near the obstacles, which significantly affected the centerline gas velocity. Oscillations in the centerline unburned gas velocity were found to be the dominate cause for the experimentally observed early flame-tip velocity oscillations. At later simulation times, regular oscillations in the unburned streamwise gas velocity were not observed, which is contrary to the experimental evidence. This suggests that fluctuations in the burning rate might be the source of the late flame-tip velocity oscillations. The effect of the obstacle blockage ratio (BR) on the development of the unburned gas flow field was also investigated by varying the obstacle height. Simulation predictions show favorable agreement with the experimental results and indicate that turbulence production increases with increasing obstacle BR.  相似文献   

3.
Meng Li 《中国物理 B》2022,31(3):34702-034702
Characteristics of a premixed, swirl methane/air diffusion flame at atmospheric pressure are measured by filtered Rayleigh scattering (FRS). Three operating conditions are investigated with the equivalence ratios of the methane/air flame covering a range of 0.67—0.83. Under each condition, single-shot and averaged FRS images over a region measured 39.3×65.6 mm2 at seven cross sections of the flame are collected to demonstrate the flame behavior. A gradient calculation algorithm is applied to identify reaction zone locations and structures in the instantaneous FRS measurements. Statistical analysis for the mean FRS measurements is performed by means of joint probability density functions. The experimental results indicate that thermochemical state of the swirl flame is strongly influenced by equivalence ratio, leading to varieties of flame structures and temperature distributions. The gradient of the instantaneous FRS images clearly illustrates the characteristics of the reaction zone. The results also demonstrate that FRS can provide detailed insights into the behavior of turbulent flames.  相似文献   

4.
This paper reports the effect of inlet flow turbulence intensity on the combustion instability characteristics in a backward facing step combustor. The inlet turbulence intensity is varied by a turbulence generator. Unsteady pressure measurements and OH* chemiluminescence images are recorded over a wide range of operating conditions at different inlet turbulence intensities. The study shows an early onset of instability at low turbulence level, i.e., higher turbulence postpones the onset of instability to higher Reynolds number Re and/or higher equivalence ratio Φ. The early onset of instability in the Re and Φ parameter spaces is due to the change in system parameters such as flame speed and size of the recirculation zone downstream of the step at different turbulence levels. Further, the onset is characterized as subcritical bifurcation. At low Re, the hysteresis zone width is small for low turbulence levels and it is large at higher turbulence levels; and at higher Re, the hysteresis width remains constant at all turbulence levels. Investigation of instability characteristics reveals that there are momentary slippages from limit cycle orbit into brief silent regimes in an intermittent manner. The frequency of occurrence of the momentary silent regimes increases with reduction in turbulence, indicating that higher turbulence helps in maintaining the system in a stable limit cycle orbit. High-speed chemiluminescence imaging reveals the necessity of the vortex rollup in the recirculation zone to grow up to the top wall by dilatation from the heat release for the onset of instability. Considerations of the effect of turbulence on both the flame speed and the recirculation zone size together explain all the observed bifurcation trends. These results suggest that inlet flow turbulence should not just be considered as background noise. The turbulence effects on both the flame and flow should be considered in predicting the instability characteristics.  相似文献   

5.
Vortical and thermal structures of non-premixed propane flame in a bluff-body burner are studied experimentally in the transition from laminar to turbulent flow. In particular, we focus attention on the effect of annular air flow on the flame. The small-scale inner vortices inside the flame is stimulated by the annular air flow, and outside the flame, small eddies due to turbulence rather than the large-scale outer vortices due to thermal buoyancy become dominant with increasing air velocity. The interrelation between the vortical and thermal structures is analyzed by looking at the frequency spectrum and probability density function of temperature fluctuations.  相似文献   

6.
The three-dimensional vortical structures formed in the wake behind a road vehicle were measured using a particle image velocimetry (PIV) technique and the change of the structures by the existence of an air spoiler was investigated. The measurements were carried out in severalx-y, y-z andz-x planes to obtain full three-dimensional flow fields, including an out-of-plane velocity component, obtained by interpolating the velocities in the other plane. Then, the velocity gradient tensor is evaluated to obtain the vortex core by theλ 2-definition. The relationship between streamwise, longitudinal and spanwise vortices is systematically analyzed by overlapping the vortex lines and vortex cores and the whole flow topology is compared in both cases with and without an air spoiler. As a result, an air spoiler was found to weaken the C-pillar vortices producing strong wing tip vortices, which reduce downwash flow and longitudinal vortices increase in the vertical direction. The recirculation zone formed when an air spoiler is installed is higher and narrower than without a spoiler.  相似文献   

7.
This paper analyzes the time averaged flow structure of a reacting jet in cross flow (RJICF), emphasizing the structure of the counter-rotating vortex pair (CVP) by using simultaneous tomographic particle image velocimetry (TPIV) and hydroxyl radical planar laser induced fluorescence (OH-PLIF). It was performed to determine the extent to which heat release, and the associated effects of gas expansion and baroclinic vorticity production, impact the structure of the CVP. These results show the clear presence of a CVP in the time averaged flow field, whose trajectory lies below the jet centerline on either side of the centerplane. Consistent with other measurements of high momentum flux ratio JICF in nonreacting flows, there is significant asymmetry in strength of the two vortex cores. The strength and structure of the CVP was quantified with vorticity and swirling strength (λci), showing that some regions of the flow with high shear are not necessarily accompanied by large scale bulk flow rotation and vice-versa. The OH PLIF measurement allows for correlation of the flame position with the dominant vortical structures, showing that the leeward flame branch lies slightly above, as well as, in the region between the CVP cores.  相似文献   

8.
实现火焰反应区和不同中间组分的在线二维瞬态成像,在湍流燃烧的基础研究中具有十分重要的意义。用Nd∶YAG激光器的5倍频输出(212.8nm)作为光源,通过激光光解诱导荧光技术在甲烷/空气预混火焰中,成功实现了火焰反应区的瞬态成像,并首次采用该技术实现了CH_3的在线瞬态成像测量。分析了该方法同其他荧光标示物在反应区二维瞬态成像方法的优势,并研究了火焰燃烧过程中其他燃烧中间产物和不同燃空比对CH_3单脉冲成像的影响,讨论了现有条件下该技术的应用范围。根据实验结果,在燃空比Φ=1.2的条件下,在反应区我们获得了信噪比约为8的单脉冲成像,分析火焰中CH_3的单脉冲成像结果可知火焰燃空比在1.0~1.4之间时,或者火焰中CH_3的浓度大于9.3×1015 molecules·cm-3信噪比较好。该项技术在动力机械及其他研究领域的应用有十分重要的参考价值。  相似文献   

9.
Large eddy simulations (LES) of turbulent non-premixed swirling flames based on the Sydney swirl burner experiments under different flame characteristics are used to uncover the underlying instability modes responsible for the centre jet precession and large scale recirculation zone. The selected flame series known as SMH flames have a fuel mixture of methane-hydrogen (50:50 by volume). The LES solves the governing equations on a structured Cartesian grid using a finite volume method, with turbulence and combustion modelling based on the localised dynamic Smagorinsky model and the steady laminar flamelet model respectively. The LES results are validated against experimental measurements and overall the LES yields good qualitative and quantitative agreement with the experimental observations. Analysis showed that the LES predicted two types of instability modes near fuel jet region and bluff body stabilised recirculation zone region. The mode I instability defined as cyclic precession of a centre jet is identified using the time periodicity of the centre jet in flames SMH1 and SMH2 and the mode II instability defined as cyclic expansion and collapse of the recirculation zone is identified using the time periodicity of the recirculation zone in flame SMH3. Finally frequency spectra obtained from the LES are found to be in good agreement with the experimentally observed precession frequencies.  相似文献   

10.
Simultaneous high-resolution Rayleigh scattering imaging and planar laser-induced fluorescence (PLIF) of OH are combined to measure the dissipative scales associated with thermal mixing and the structure and scales of extinguished regions of the reaction zone. Measurements are performed throughout the near field (x/d = 5, 10, 15, 20) of two turbulent, non-premixed methane/hydrogen/nitrogen jet flames with Re = 15,200 and 22,800 (flames DLR-A and DLR-B of the TNF workshop). Locally extinguished regions are identified by discontinuities in the OH layers, and the extinction hole sizes are measured. For each flame, the probability density function of the hole sizes is very similar throughout the entire near field, with the most likely hole size being 1.9 mm in DLR-A and 1.1 mm in DLR-B. Extinction events are equally probable at all measurement locations in DLR-A. In the DLR-B flame, there is a progression from frequent extinction close to the nozzle to more continuous reaction zones further downstream. The approximate instantaneous location of the stoichiometric contour is determined using the OH-PLIF images, enabling statistical analysis of dissipative scales conditioned on rich and lean conditions. The widths of the thin, elongated structures that dominate the thermal dissipation field are measured. Statistics of this microscale are qualitatively similar in both flames, with the higher Reynolds number producing smaller scales throughout the flow field. For dissipation layers in rich regions, the layer widths increase significantly with increasing temperature, while on the lean side the layer widths decrease with increasing temperature.  相似文献   

11.
Experimental data is presented for the interaction between a propagating flame and a simple vortex flow field structure generated in the wake of solid obstacles. The interaction between gas movement and obstacles creates vortex shedding forming a simple flow field recirculation. The presence of the simple turbulent structure within the gas mixture curls the flame front increasing curvature and enhancing burning rate. A novel twin camera Particle Image Velocimetry, PIV, was employed to characterise the flow field recirculation and the interaction with the flame front. The technique allowed the quantification of the flame/vortex interaction. The twin camera technique provides data to define the spatial variation of both the velocity of the flow field and flame front. Experimentally obtained values of local flame displacement speed and flame stretch rate are presented for simple flame/vortex interactions.  相似文献   

12.
In this paper we present the first measurement of turbulent burning velocities of a highly turbulent compressible standing flame induced by shock-driven turbulence in a Turbulent Shock Tube. High-speed schlieren, chemiluminescence, PIV, and dynamic pressure measurements are made to quantify flame–turbulence interaction for high levels of turbulence at elevated temperatures and pressure. Distributions of turbulent velocities, vorticity and turbulent strain are provided for regions ahead and behind the standing flame. The turbulent flame speed is directly measured for the high-Mach standing turbulent flame. From measurements of the flame turbulent speed and turbulent Mach number, transition into a non-linear compressibility regime at turbulent Mach numbers above 0.4 is confirmed, and a possible mechanism for flame generated turbulence and deflagration-to-detonation transition is established.  相似文献   

13.
针对采用偏心旋流二次风燃烧技术的300 MWe旋流燃烧器W火焰炉,借助1/10冷模试验台,通过三维激光颗粒动态分析仪测量研究了不同燃尽风率下其主燃区内气固流动特性。随着燃尽风率减小,拱下回流区内回流速度不断增加,且回流区尺寸不断增大。随着燃尽风率由25%减小到10%,在分级分区域,颗粒的最大竖直速度由2 m/s增大到4 m/s.燃尽风率由20.3%减小到10%,拱下回流区内气固两相竖直脉动速度明显增大,气固两相湍流强度将不断增大.在乏气和分级风区域,燃尽风率15%下最大颗粒体积流率是燃尽风率20.3%的2至2.7倍,拱上气流下冲深度明显增加.随着燃尽风率减小,下冲颗粒开始折转向上的位置被推迟,下炉膛空间利用率将不断增加.  相似文献   

14.
The characteristics of supersonic impinging jets are investigated using Particle Image Velocimetry (PIV). The purpose of the experiments is to understand the jet induced forces on STOVL aircraft while hovering close to the ground. For this purpose, a large diameter circular plate was attached at the nozzle exit. The oscillations of the impinging jet generated due to a feedback loop are captured in the PIV images. The instantaneous velocity field measurements are used to describe flow characteristics of the impinging jet. The important flow features such as oscillating shock waves, slipstream shear layers and large scale structures are captured clearly by the PIV. The presence of large scale structures in the impinging jet induced high entrainment velocity in the near hydrodynamic field, which resulted in lift plate suction pressures. A passive control device is used to interfere with the acoustic waves travelling in the ambient medium to suppress the feedback loop. As a consequence, the large scale vortical structures disappeared completely leading to a corresponding reduction in the entrainment.  相似文献   

15.
Injection of N2 through micro-jets located on the dump plane of a lean premixed swirl stabilized combustor is investigated as a new method for mitigating combustion instabilities. This study focuses on the chemical and fluid dynamic processes by which the N2 micro-jets impact the flame dynamics. An experimental and numerical investigation is performed to characterize the combustion instability during the V-to-M flame shape transition in a swirl burner fueled with premixed CH4/air, at an equivalence ratio of 0.62. Reasonable agreements have been found between the experimental measurements and simulation results. Both of them present that the flame changes from V-shape to M-shape periodically, and a low-frequency instability around 10 Hz is observed accordingly. It is confirmed that intermittent flame extinction in the outer recirculation zone (ORZ) is the source of the combustion instability. Furthermore, injection of N2 through micro-jets located on the combustor dump plane, into the outer recirculation zone, results in a stable V shape flame. It is clearly seen that the ORZ dilution can eliminate the combustion instability without inhibiting the combustion efficiency. A special focus is placed on the impact of the diluent injection on the local flame-flow interaction. The nitrogen micro-jets increase the local nitrogen concentration by 7% on average, lowering the flame speed and extinction strain rates by 27% and 17% respectively. Moreover, the micro-jets increase the turbulence intensity in the ORZ, leading to a significant increase in the Karlovitz number and transferring the local combustion regime from the thin reaction zone regime to the broken reaction zone regime. Hence, the nitrogen micro-jets impact on both the turbulence and the chemical reaction rates prevents flame propagation into the ORZ and results in a stable flame.  相似文献   

16.
An experimental study on lean turbulent premixed methane–air flames at high pressure is conducted by using a turbulent Bunsen flame configuration. A single equivalence ratio flame at Φ = 0.6 is explored for pressures ranging from atmospheric pressure to 0.9 MPa. LDA measurements of the cold flow indicate that turbulence intensities and the integral length scale are not sensitive to pressure. Due to the decreased kinematic viscosity with increasing pressure, the turbulent Reynolds numbers increase, and isotropic turbulence scaling relations indicate a large decrease of the smallest turbulence scales. Available experimental results and PREMIX code computations indicate a decrease in laminar flame propagation velocities with increasing pressure, essentially between the atmospheric pressure and 0.5 MPa. The u′/SL ratio increases therefore accordingly. Instantaneous flame images are obtained by Mie scattering tomography. The images and their analysis show that pressure increase generates small scale flame structures. In an attempt to generalize these results, the variance of the flamelet curvatures, the standard deviation of the flamelet orientation angle, and the flamelet crossing lengths have been plotted against which is proportional to the ratio between the integral and Taylor length scales, and which increases with pressure. These three parameters vary linearly with the ratio between large and small turbulence scales and clearly indicate the strong effect of this parameter on premixed turbulent flame dynamics and structure. An obvious consequence is the increase in flame surface density and hence burning rate with pressure, as confirmed by its direct determination from 2D tomographic images.  相似文献   

17.
A gun-type burner is a widely used oil burner for industrial and domestic applications. The oil is pressure-atomized and mixed with air generating a recirculating, swirling flow. Because of the surrounding flame, fuel droplets evaporate, being difficult to obtain information on droplets’ dynamics. Several laser techniques have been applied to this burner for spray diagnosis. PDA provides information about droplet size and velocity but can say little about the instantaneous spatial structures in the flow. Planar laser techniques as PIV can describe the 2D instantaneous spatial structures, but cannot provide information about the 3D structures in the flow. Then Stereoscopic PIV was applied. This technique allows us to measure the full 3D velocity vector map in a whole fluid plane. This paper has a double purpose. Firstly, to visualize the 3D structures which are present in the burner; secondly, to show that Stereoscopic PIV is an applicable technique for the diagnosis of an evaporating spray.  相似文献   

18.
The frequency response of three lean methane/air flames submitted to flowrate perturbations is analyzed for flames featuring the same equivalence ratio and thermal power, but a different stabilization mechanism. The first flame is stabilized by a central bluff body without swirl, the second one by the same bluff body with the addition of swirl and the last one only by swirl without central insert. In the two last cases, the swirl level is roughly the same. These three flames feature different shapes and heat release distributions, but their Flame Transfer Function (FTF) feature about the same phase lag at low frequencies. The gain of the FTF also shows the same behavior for the flame stabilized by the central insert without swirl and the one fully aerodynamically stabilized by swirl. Shedding of vortical structures from the injector nozzle that grow and rollup the flame tip controls the FTF of these flames. The flame stabilized by the swirler-plus-bluff-body system features a peculiar response with a large drop of the FTF gain around a frequency at which large swirl number oscillations are observed. Velocity measurements in cold flow conditions reveal a strong reduction of the size of the vortical structures shed from the injector lip at this forcing condition. The flame stabilized aerodynamically only by swirl and the one stabilized by the bluff body without swirl do not exhibit any FTF gain drop at low frequencies. In the former case, large swirl number oscillations are still identified, but large vortical structures shed from the nozzle also persist at the same forcing frequency in the cold flow response. These different flame responses are found to be intimately related to the dynamics of the internal recirculation region, which response strongly differs depending upon the injector used to stabilize the flame.  相似文献   

19.
Coherent structures, such as those arising from hydrodynamic instabilities or excited by thermoacoustic oscillations, can significantly impact flame structure and, consequently, the nature of heat release. The focus of this work is to study how coherent oscillations of varying amplitudes can impact the growth of the flame brush in a bluff-body stabilized flame and how this impact is influenced by the free stream turbulence intensity of the flow approaching the bluff body. We do this by providing external acoustic excitation at the natural frequency of vortex shedding to simulate a highly-coupled thermoacoustic instability, and we vary the in-flow turbulence intensity using perforated plates upstream of the flame. We use high-speed stereoscopic particle image velocimetry to obtain the three-component velocity field and we use the Mie-scattering images to quantify the behavior of the flame edge. Our results show that in the low-turbulence conditions, presence of high-amplitude acoustic excitation can cause the flame brush to exhibit a step-function growth, indicating that the presence of strong vortical structures close to the flame can suppress flame brush growth. This impact is strongly dependent on the in-flow turbulence intensity and the flame brush development in conditions with higher levels of in-flow turbulence are minimally impacted by increasing amplitudes of acoustic excitation. These findings suggest that the sensitivity of the flow and flame to high-amplitude coherent oscillations is a strong function of the in-flow turbulence intensity.  相似文献   

20.
A novel approach to extract flame fronts, which is called the conditioned level-set method with block division (CLSB), has been developed. Based on a two-phase level-set formulation, the conditioned initialization and region-lock optimiza-tion appear to be beneficial to improve the efficiency and accuracy of the flame contour identification. The original block- division strategy enables the approach to be unsupervised by calculating local self-adaptive threshold values autonomously before binarization. The CLSB approach has been applied to deal with a large set of experimental data involving swirl- stabilized premixed combustion in diluted regimes operating at atmospheric pressures. The OH-PLIF measurements have been carried out in this framework. The resulting images are, thus, featured by lower signal-to-noise ratios (SNRs) than the ideal image; relatively complex flame structures lead to significant non-uniformity in the OH signal intensity; and, the mag- nitude of the maximum OH gradient observed along the flame front can also vary depending on flow or local stoichiometry. Compared with other conventional edge detection operators, the CLSB method demonstrates a good ability to deal with the OH-PLIF images at low SNR and with the presence of a multiple scales of both OH intensity and OH gradient. The robustness to noise sensitivity and intensity inhomogeneity has been evaluated throughout a range of experimental images of diluted flames, as well as against a circle test as Ground Truth (GT).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号