共查询到20条相似文献,搜索用时 82 毫秒
1.
采用分子动力学方法和镶嵌原子势,模拟了500个Cu原子(简称Cu500) 组成的纳米颗粒的等温晶化过程.利用修正的均方位移、键对分析技术和内在结构(IS) 等方法对该过程中的结构和动力学行为进行分析研究.结果显示:与块体金属不同的是, Cu500纳米颗粒在某一温度保温时,其晶化时间并不是一个定值, 而是存在一个统计分布,并且保温温度越低其晶化时间的分布范围越广, 最长晶化时间越长.在低温晶化时, Cu500经历了一系列中间构型的转变才达到晶态, 表现出多步晶化的特征.文章作者研究了颗粒的初始构型对晶化进程的影响, 发现颗粒的初始结构特征和能量状态对其随后的晶化过程有着重要的影响, 同一温度下,颗粒初始构型的IS能量越低其晶化时间越长,这一点在低温时尤其明显. 相似文献
2.
采用分子动力学方法和镶嵌原子势, 模拟了4000个Cu原子和13500个Cu原子(简称Cu4000和Cu13500)组成的纳米颗粒以及块体Cu的等温晶化过程. 通过对这些颗粒在晶化过程中结构和动力学行为的分析研究, 发现低温时, 不同尺寸的纳米Cu颗粒均出现多步晶化, 且晶化时间的分布曲线远比高温时范围大; 除了温度, 颗粒尺寸对晶化行为也有重要的影响, 尺寸越大, 晶化时间越长, 最终的晶化程度越高; 但是晶化时间随尺寸增大而增加的趋势不会一直持续, 发现存在一个临界尺寸rc, 小于rc时, 晶化时间随颗粒尺寸增大而增加, 大于rc时,晶化时间随尺寸增大而减小. 相似文献
3.
利用准分子脉冲激光晶化非晶硅薄膜是制备高密度尺寸可控的硅基纳米结构的有效方法之一.本文将脉冲激光对非晶硅超薄膜的影响处理为热传导问题,采用了基于Tersoff势函数的分子动力学方法模拟了在非晶氮化硅衬底上2.7 nm超薄非晶硅膜的脉冲激光晶化过程.研究了不同激光能量对非晶硅薄膜晶化形成纳米硅的影响,发现在合适的激光能量窗口下,可以获得高密度尺寸可控的纳米硅薄膜,进而模拟了在此能量作用下非晶硅膜中成核与生长的机理与微观过程,并对晶化所获得的纳米硅薄膜的微结构进行了分析.
关键词:
非晶硅
分子动力学
脉冲激光晶化 相似文献
4.
龙林 《原子与分子物理学报》2017,34(6)
本文采用分子动力学模拟方法结合镶嵌原子势,研究了在200 K时二元(CoAl)1415团簇的结构随Co原子浓度的变化情况。利用径向分布函数、对分析技术和键取向序参数方法研究了微观局部结构情况,研究结果表明: (CoAl)1415团簇的组分对最终冷却结构影响较大,Co原子浓度为100%~70%的团簇表现出不完全的六角密排结构特征;Co原子浓度为50%的团簇具有局部的体心立方体结构特征;Co原子浓度为30%~10%时,表现出部分区域的二十面体和缺陷二十面体结构特征。 相似文献
5.
本文采用分子动力学模拟方法结合镶嵌原子势,研究了在200 K时二元(Co Al)1415团簇的结构随Co原子浓度的变化情况.利用径向分布函数、对分析技术和键取向序参数方法研究了微观局部结构情况,研究结果表明:(Co Al)1415团簇的组分对最终冷却结构影响较大,Co原子浓度为100%~70%的团簇表现出不完全的六角密排结构特征;Co原子浓度为50%的团簇具有局部的体心立方体结构特征;Co原子浓度为30%~10%时,表现出部分区域的二十面体和缺陷二十面体结构特征. 相似文献
6.
应用分子模拟方法,建立了聚酰亚胺(polyimide,PI),石墨烯及羧基、氨基、羟基功能化石墨烯模型,探究了聚酰亚胺和石墨烯,聚酰亚胺和功能化石墨烯共混后复合材料的力学性能和玻璃化转变温度(T_g).研究结果表明,羧基修饰的石墨烯与PI复合后材料力学性能增加显著,其杨氏模量和剪切模量分别为4.946 GPa和1.816 GPa.不同官能团修饰的石墨烯引入PI后材料的T_g均有不同程度下降;未修饰的石墨烯与PI复合后,其T_g(559.30 K)较纯PI的T_g(663.57 K)降幅最大;而羧基修饰的石墨烯与PI复合后T_g(601.61 K)降幅最小.计算比较了PI/石墨烯复合材料体系密度、溶解度参数、相互作用能、弹性系数和氢键平均密度,研究发现羧基修饰石墨烯/PI复合材料的密度为1.396 g·cm~(-3),溶解度参数为23.51 J~(1/2)·cm~(-3/2),其相互作用能与氢键平均密度最大,弹性系数显示羧基修饰石墨烯与PI组成的复合材料内部最均匀.计算结果表明,羧基功能化石墨烯可以大幅度提高PI的力学性能,增强石墨烯与PI之间的相互作用可以减少复合材料T_g的降幅程度.此基体间相互作用的研究方法可以作为预测聚合物基纳米复合材料结构与性能的有效工具,以期为材料的设计与应用提供理论指导. 相似文献
7.
8.
利用分子动力学模拟技术研究了金属间化合物Cu3Au熔体的双体分布函数g(r)在快速凝固条件下随温度的变化情况,结果表明,Cu3Au降温至700K时第二峰已发生劈裂,液态金属中已经产生了非晶态;用键对分析技术详细考察了Cu3Au中微观组团随温度的演化特点,液体中的键对数及多面体数与温度的关系都表明,Cu3Au在向非晶转变的过程中,的确发生了微观结构组态的变化,其中以液体中的缺陷多面体随温度变化最为剧烈。非晶不是过冷液态的“冻结”。 相似文献
9.
10.
使用分子动力学方法,模拟研究了单晶Cu(001)薄膜在双向等轴拉伸应变下的塑性变形行为.当应变超过一定值时,样品通过产生位错、层错及孪晶而发生塑性变形.当应变相对较低时,不全位错首先在薄膜表面形核并在密排面上滑移,留下堆积层错;当应变增加时,位错在表面与内部同时成核生长,层错数量也随之增加.分析了相邻滑移面上的位错之间相互作用形成孪晶的微观过程.材料内部形成大量堆积层错及孪晶后,较大孪晶的密排面上的原子也会发生滑移,形成孪晶内部的层错结构以释放残余应力. 相似文献
11.
Molecular dynamics with the stochastic process provides a convenient way to compute structural and thermodynamic properties of chemical, biological, and materials systems. It is demonstrated that the virtual dynamics case that we proposed for the Langevin equation[J. Chem. Phys. 147, 184104 (2017)] in principle exists in other types of stochastic thermostats as well. The recommended "middle" scheme[J. Chem. Phys. 147, 034109 (2017)] of the Andersen thermostat is investigated as an example. As shown by both analytic and numerical results, while the real and virtual dynamics cases approach the same plateau of the characteristic correlation time in the high collision frequency limit, the accuracy and efficiency of sampling are relatively insensitive to the value of the collision frequency in a broad range. After we compare the behaviors of the Andersen thermostat to those of Langevin dynamics, a heuristic schematic representation is proposed for understanding efficient stochastic thermostatting processes with molecular dynamics. 相似文献
12.
3D non-equilibrium molecular dynamics (NEMD) simulations using embedded atom potentials method (EAM) are performed to identify the dynamics processes of atomic-scale interfacial friction taking places in metal tribopairs. A block-block sliding simulation model for soft-to-hard (Cu/Fe) and soft-to-soft (Cu/Ag) tribopairs with is built. The microstructural evolution and temperature variation of the two tribopairs are analyzed at different sliding speeds. The results show that the average temperature of the two different tribopairs both increases rapidly during the transient sliding period. The different microstructural changes for the two tribopairs, including extensive plastic deformation, mechanical mixing and material transfer are observed when the temperature rapidly increases. The characteristics of the friction effects for the two tribopairs are also revealed by analyzing the friction force evolution as a function of time and velocity. 相似文献
13.
采用分子动力学方法计算得到DHI-乙烯醇聚合体系统的结构和径向分布函数。讨论了系统结构和径向分布函数与温度和压力之间的关系。结果表明粘合系统的空间分布一般地随着温度和压力的增加而收窄,对增加聚氨酯系统的粘合性具有积极的意义。 相似文献
14.
采用分子动力学模拟方法模拟了在周期性边界条件下由500个原子构成的液态Mg模型系统的凝固过程,分别考察了在5×10^14 K/s、5×10^13 K/s、1×10^13 K/s 、1×10^12 K/s的冷却速率下液态Mg熔体的凝固行为。模拟结果很好地重现了实验值。模拟中原子间作用势采用FS势,结构分析采用径向分布函数、均方位移、系统总能量分析、H-A键对分析技术等方法。结果表明,当冷却速率为5×10^14 K/s时,系统形成以1541键对为主的非晶态结构;当冷却速率分别为5×10^13 K/s、1×10^13 K/s、1×10^12 K/s时,系统形成以1421、1422键对为主的hcp晶态结构;另外,在快速冷却形成非晶的过程中,大部分bcc结构被保留下来,而在慢冷形成晶态的过程中,大部分bcc结构最终演化形成了hcp结构。 相似文献
15.
采用分子动力学方法计算得到DHI-乙烯醇聚合体系统的结构和径向分布函数.讨论了系统结构和径向分布函数与温度和压力之间的关系.结果表明粘合系统的空间分布一般地随着温度和压力的增加而收窄,对增加聚氨酯系统的粘合性具有积极的意义. 相似文献
16.
应用基于嵌入原子方法的分子动力学计算研究了Cu57和Cu58团簇在升温过程中变为熔体的结构演化过程.两个团簇在熔化时表现出不同的结构变化行为,进而影响到它们能量变化的差异.在升温时,团簇不同区域的原子局域结构变化由原子密度分布函数确定.模拟表明,即使对于这两个仅相差一个原子的小尺寸团簇,结构变化也敏感于团簇的尺寸. 相似文献
17.
采用常温、常压分子动力学模拟方法和FS(Finnis Sinclair)势 ,研究了在周期性边界条件下由 5 0 0个原子构成的液态Cu模型系统的凝固过程 ,考察了不同降温速率下Cu的凝固行为 ,得到了不同温度、不同冷却速率下Cu的双体分布函数 ;采用HA键型指数法统计了各种小原子团在不同温度下所占比例 ,采用键取向序分析了体系降温全过程的局域取向对称性 ,得到原子体系微观结构组态变化的重要信息 ;最后 ,利用能量分析的方法对体系微观结构的变化进行了说明 ,给出了液态Cu冷凝过程中微观结构转变的重要信息 . 相似文献
18.
液态合金NiAl凝固过程中微观结构转变的分子动力学模拟 总被引:3,自引:0,他引:3
采用分子动力学模拟方法对液态NiAl凝固过程进行了研究 ,考察了不同冷却速度下液态NiAl结构变化特点 ,原子间相互作用势采用F S多体势 ,结构分析采用键取向序和对分析技术 .计算结果表明 ,冷却速度对液态NiAl结构转变有重要影响 ,在不同的冷却速度下 ,NiAl凝固过程出现了明显不同 ,冷速为 4× 10 13 和4× 10 12 K/s时 ,NiAl快速凝固为无序的非晶体结构 ;而在较慢的 8× 10 11K/s冷速下 ,NiAl凝固为晶态结构 .给出了不同冷却速度下液态NiAl结构转变的微观信息 . 相似文献
19.
20.
Molecular dynamics (MD) simulation has become a powerful tool to investigate the structurefunction relationship of proteins and other biological macromolecules at atomic resolution and biologically relevant timescales. MD simulations often produce massive datasets containing millions of snapshots describing proteins in motion. Therefore, clustering algorithms have been in high demand to be developed and applied to classify these MD snapshots and gain biological insights. There mainly exist two categories of clustering algorithms that aim to group protein conformations into clusters based on the similarity of their shape (geometric clustering) and kinetics (kinetic clustering). In this paper, we review a series of frequently used clustering algorithms applied in MD simulations, including divisive algorithms, agglomerative algorithms (single-linkage, complete-linkage, average-linkage, centroid-linkage and ward-linkage), center-based algorithms (K-Means, K-Medoids, K-Centers, and APM), density-based algorithms (neighbor-based, DBSCAN, density-peaks, and Robust-DB), and spectral-based algorithms (PCCA and PCCA+). In particular, differences between geometric and kinetic clustering metrics will be discussed along with the performances of different clustering algorithms. We note that there does not exist a one-size-fits-all algorithm in the classification of MD datasets. For a specific application, the right choice of clustering algorithm should be based on the purpose of clustering, and the intrinsic properties of the MD conformational ensembles. Therefore, a main focus of our review is to describe the merits and limitations of each clustering algorithm. We expect that this review would be helpful to guide researchers to choose appropriate clustering algorithms for their own MD datasets. 相似文献