首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Electrophoresis is the transport of dissolved molecules or suspended particles in a homogeneous polar liquid (such as water) under the influence of an electric field. Most molecules or particles acquire a surface electric charge when dissolved or suspended in buffered water (or other polar liquids), owing to ionization or adsorption of ions present in the water. The sign of the surface charge of molecules or particles determines whether they will migrate towards the positive or the negative electrode of the applied electric field, and the velocity of migration depends on the surface potential of the molecules or particles, as well as on the potential of the electric field.  相似文献   

2.
气溶胶粒子通过填充柱的保留时间分布测定   总被引:1,自引:0,他引:1  
采用亚微米单分散聚苯乙烯球形硬气溶胶粒子和脉冲进样技术,测定了气溶胶粒子通过无规则石英砂填充柱的保留时间分布,从保留时间分布曲线得到了气溶胶粒子在填充柱中的平均保留时间和穿透率.研究了平均保留时间和穿透率与流体流速、填充柱的长度、填料粒度和气溶胶粒子大小之间的关系.研究发现,流速越大,保留时间分布曲线越尖锐,流速越小,保留时间分布曲线越平坦;气溶胶粒子的穿透率随着柱长的增加而降低,随流速、气溶胶粒子粒径和石英砂颗粒大小的减小而减小;平均保留时间随柱长增加而增大,随流速增大而减小,随气溶胶粒子粒径减小而减小,而与石英砂颗粒大小几乎无关.  相似文献   

3.
The mechanisms and causes of deviation from the classical colloid filtration theory (CFT) in the presence of repulsive Derjaguin-Landau-Verwey-Overbeek (DLVO) interactions were investigated. The deposition behavior of uniform polystyrene latex colloids in columns packed with spherical soda-lime glass beads was systematically examined over a broad range of physicochemical conditions, whereby both the fluid-phase effluent particle concentration and the profile of retained particles were measured. Experiments conducted with three different-sized particles in a simple (1:1) electrolyte solution reveal the controlling influence of secondary minimum deposition on the deviation from CFT. In a second series of experiments, sodium dodecyl sulfate (SDS) was added to the background electrolyte solution with the intent of masking near-neutrally charged regions of particle and collector surfaces. These results indicate that the addition of a small amount of anionic surfactant is sufficient to reduce the influence of certain surface charge inhomogeneities on the deviation from CFT. To verify the validity of CFT in the absence of surface charge heterogeneities, a third set of experiments was conducted using solutions of high pH to mask the influence of metal oxide impurities on glass bead surfaces. The results demonstrate that both secondary minimum deposition and surface charge heterogeneities contribute significantly to the deviation from CFT generally observed in colloid deposition studies. It is further shown that agreement with CFT is obtained even in the presence of an energy barrier (i.e., repulsive colloidal interactions), suggesting that it is not the general existence of repulsive conditions which causes deviation but rather the combined occurrence of "fast" and "slow" particle deposition.  相似文献   

4.
The surfaces of nano-hydroxyapatite (nHAP) used for contaminated soil and groundwater remediation may be modified to render nHAP highly mobile in the subsurface. Humic acid (HA) is widely used to modify and stabilize colloid suspensions. In this work, column experiments were conducted to determine the effects of contaminant (e.g., Cu) concentration, ionic strength (IS), and ion composition (IC) on the transport behavior of HA-modified nHAP in saturated packed columns. IS and nature of the cation had strong effects on the deposition of nHAP, and the effect was greater for divalent than for monovalent cations. Divalent cations have a greater capacity to screen the surface charge of nHAP, and Ca(2+) bridges the HA-modified nHAP colloidal particles, which causes greater deposition. Moreover, Cu(2+) had a greater effect on the transport behavior than Ca(2+) due to their strong exchange with Ca(2+) of nHAP and its surface complexation with nHAP. The relative travel distance L(T), of the injected HA-modified nHAP colloids, ranges from less than one to several meters at varying Cu concentrations, ISs, and ICs in saturated packed columns. The results are crucial to evaluate the efficacy of nHAP on the remediation of contaminated soil and groundwater environments.  相似文献   

5.
Among the prerequisites for the progress of single‐molecule‐based electronic devices are a better understanding of the electronic properties at the individual molecular level and the development of methods to tune the charge transport through molecular junctions. Scanning tunneling microscopy (STM) is an ideal tool not only for the characterization, but also for the manipulation of single atoms and molecules on surfaces. The conductance through a single molecule can be measured by contacting the molecule with atomic precision and forming a molecular bridge between the metallic STM tip electrode and the metallic surface electrode. The parameters affecting the conductance are mainly related to their electronic structure and to the coupling to the metallic electrodes. Here, the experimental and theoretical analyses are focused on single tetracenothiophene molecules and demonstrate that an in situ‐induced direct desulfurization reaction of the thiophene moiety strongly improves the molecular anchoring by forming covalent bonds between molecular carbon and copper surface atoms. This bond formation leads to an increase of the conductance by about 50 % compared to the initial state.  相似文献   

6.
In this tutorial review we illustrate the origin and dependence on various system parameters of the ionic conductance that exists in discrete nanochannels as well as in nanoporous separation and preconcentration units contained as hybrid configurations, membranes, packed beds, or monoliths in microscale liquid phase analysis systems. A particular complexity arises as external electrical fields are superimposed on internal chemical and electrical potential gradients for tailoring molecular transport. It is demonstrated that the variety of geometries in which the microfluidic/nanofluidic interfaces are realized share common, fundamental features of coupled mass and charge transport, but that phenomena behind the key steps in a particular application can be significantly tuned, depending on the morphology of a material. Thus, the understanding of morphology-related transport in internal and external electrical potential gradients is critical to the performance of a device. This addresses a variety of geometries (slits, channels, filters, membranes, random or regular networks of pores, etc.) and applications, e. g., the gating, sensing, preconcentration, and separation in multifunctional miniaturized devices. Inherently coupled mass and charge transport through ion-permselective (charge-selective) microfluidic/nanofluidic interfaces is analyzed with a stepwise-added complexity and discussed with respect to the morphology of the charge-selective spatial domains. Within this scenario, the electrostatics and electrokinetics in microfluidic and nanofluidic channels, as well as the electrohydrodynamics evolving at microfluidic/nanofluidic interfaces, where microfluidics meets nanofluidics, define the platform of central phenomena.  相似文献   

7.
Colloidosomes are aqueous cores surrounded by a shell composed of packed colloidal particles. Recent studies suggest that these colloidal shells reduce, or even inhibit, the transport of molecular species (diffusants). However, the effect of the colloidal shell on transport is unclear: In some cases, the reduction in transport of diffusants through the shell was found to be independent of the size of the colloidal particles composing the shell. Other studies find, however, that shells composed of small colloidal particles of order 100nm or less hindered transport of diffusants more than those composed of micro-scale colloidal particles. In this paper we present a simple diffusion model that accounts for three processes that reduce diffusant transport through the shell: (i) a reduction in the penetrable volume available for transport, which also increases the tortuousity of the diffusional path, (ii) narrow pore size which may hinder transport for larger diffusants through size exclusion, and (iii) a reduction in interfacial area due to 'blocking' of the surface by the adsorbed particles. We find that the colloidal particle size does not affect the reduction in transport through the colloidal shell when the shell is a monolayer. However, in closely packed, thick layers where the thickness of the multi-layer shell is fixed, the rate of transport decreases significantly with colloidal particle dimensions. These results are in excellent agreement with previously published experimental results.  相似文献   

8.
The influence of the Stern layer conductance on the dielectrophoretic behavior of sub-micrometer-sized latex spheres is examined. The dielectrophoretic response of the particles is measured and analyzed in terms of a model of surface conductance divided into discrete components related to the structure of the double layer. The effect of both co- and counterions in the bulk solution on the Stern layer conductance is demonstrated.  相似文献   

9.
An analysis of the dielectrophoretic crossover frequency as a function of medium conductivity has been made for submicron spheres with different surface functionalities. It is shown that the AC electrokinetic behavior of the particles can be explained by modeling the surface conductivity of the particle as the sum of two surface conductance components: one due to charge motion behind the slip plane (the Stern layer) and the other due to charge motion in front of the slip plane.  相似文献   

10.
Peak parking experiments were conducted to study the chromatographic behavior in a RPLC system consisting of a column packed with superficially porous C(18)-particles and a mixture of methanol and water (70/30, v/v). The values of the surface diffusion coefficient and the retention equilibrium constant of a column packed with superficially porous C(18)-particles were comparable to those of columns packed with a C(18)-silica monolith and full-porous C(18)-silica gel particles. The flow-rate dependence of HETP was hypothetically calculated by using moment equations to clarify the influence of the structural characteristics on the chromatographic behavior. The column efficiency of a column packed with the superficially porous particles is higher in the high flow-rate range than that with full-porous spherical particles. This is attributed to the smaller contribution of the intraparticulate mass transfer in the superficially porous particles to band broadening. The moment equations are effective for the quantitative analysis of chromatographic behavior of superficially porous particles.  相似文献   

11.
平流式流动电位测试系统的研制   总被引:1,自引:0,他引:1  
汪锰  吴礼光  莫剑雄  郑幸存  高从堦 《分析化学》2006,34(10):1507-1510
分离膜表面的荷电化显著地影响着膜的分离性能和耐污染能力。因此,定量化表征膜表面电性能具有重要的理论价值和实际意义。作者在前期透过式膜流动电位测试系统研发工作的基础上成功地研制了平流式流动电位测试系统,并且首次将恒电流法测膜体电导引入膜表面ζ(Zeta)电位的确定过程中。以自制不同共混比的合金荷电膜为测试对象,利用该测试系统和经典的Helmholtz-Smoluchowski(H-S)方程及其变体得到了不同pH下的膜表面Zeta电位,从而揭示了膜表面电导、膜体电导对膜表面Zeta电位的贡献,并展示了该流动电位测试系统的有效性。  相似文献   

12.
We present porous electrode theory for the general situation of electrolytes containing mixtures of mobile ions of arbitrary valencies and diffusion coefficients (mobilities). We focus on electrodes composed of primary particles that are porous themselves. The predominantly bimodal distribution of pores in the electrode consists of the interparticle or macroporosity outside the particles through which the ions are transported (transport pathways), and the intraparticle or micropores inside the particles, where electrostatic double layers (EDLs) are formed. Both types of pores are filled with electrolyte (solvent plus ions). For the micropores we make use of a novel modified-Donnan (mD) approach valid for strongly overlapped double layers. The mD-model extends the standard Donnan approach in two ways: (1) by including a Stern layer in between the electrical charge and the ions in the micropores, and (2) by including a chemical attraction energy for the ions to go from the macropores into the micropores. This is the first paper where the mD-model is used to model ion transport and electrochemical reactions in a porous electrode. Furthermore we investigate the influence of the charge transfer kinetics on the chemical charge in the electrode, i.e., a contribution to the electrode charge of an origin different from that stemming from the Faradaic reaction itself, e.g. originating from carboxylic acid surface groups as found in activated carbon electrodes. We show that the chemical charge depends on the current via a shift in local pH, i.e. ??current-induced charge regulation.?? We present results of an example calculation where a divalent cation is reduced to a monovalent ion which electro-diffuses out of the electrode.  相似文献   

13.
A series of oligophenylene rods of increasing lengths is synthesized to investigate the charge‐transport mechanisms. Methyl groups are attached to the phenyl rings to weaken the electronic overlap of the π‐subsystems along the molecular backbones. Out‐of‐plane rotation of the phenyl rings is confirmed in the solid state by means of X‐ray analysis and in solution by using UV/Vis spectroscopy. The influence of the reduced π‐conjugation on the resonant charge transport is studied at the single‐molecule level by using the mechanically controllable break‐junction technique. Experiments are performed under ultra‐high‐vacuum conditions at low temperature (50 K). A linear increase of the conductance gap with increasing number of phenyl rings (from 260 meV for one ring to 580 meV for four rings) is revealed. In addition, the absolute conductance of the first resonant peaks does not depend on the length of the molecular wire. Resonant transport through the first molecular orbital is found to be dominated by charge‐carrier injection into the molecule, rather than by the intrinsic resistance of the molecular wire length.  相似文献   

14.
The effective surface potential, called the zeta potential, is commonly determined from electrophoretic mobility measurements for particles moving in a solution in response to an electric field applied between two electrodes. The situation can be reversed, with the solution being forced to flow through a plug of packed particles, and the streaming potential of the particles can be calculated. A significant limitation of these electrokinetic measurements is that only an average value of the zeta potential/streaming potential is measured--regardless of whether the surface charge distribution is homogeneous or otherwise. However, in real-world situations, nearly all solids (and liquids) of technological significance exhibit surface heterogeneities. To detect heterogeneities in surface charge, analytical tools which provide accurate and spatially resolved information about the material surface potential--particularly at microscopic and submicroscopic resolutions--are needed. In this study, atomic force microscopy (AFM) was used to measure the surface interaction forces between a silicon nitride AFM cantilever and a multiphase volcanic rock. The experiments were conducted in electrolyte solutions with different ionic strengths and pH values. The colloidal force measurements were carried out stepwise across the boundary between adjacent phases. At each location, the force-distance curves were recorded. Surface charge densities were then calculated by fitting the experimental data with a DLVO theoretical model. Significant differences between the surface charge densities of the two phases and gradual transitions in the surface charge density at the interface were observed. It is demonstrated that this novel technique can be applied to examine one- and two-dimensional distributions of the surface potential.  相似文献   

15.
A scanning tunneling microscope (STM) is used to study individual Ag doping centers in a monolayer of C60 molecules supported on a thin Al2O3 film grown on the NiAl(110) surface. Vibronic states of the doping centers are observed with differential conductance (dIdV) spectroscopy. The double-barrier nature of the junction results in bipolar transport: same states participate in charge transport at both bias voltage polarities. Identification of the dIdV features corresponding to bipolar conduction enables a new mode of vibrational spectroscopy with STM.  相似文献   

16.
The emerging field of BioMolecular Electronics aims to unveil the charge transport characteristics of biomolecules with two primary outcomes envisioned. The first is to use nature's efficient charge transport mechanisms as an inspiration to build the next generation of hybrid bioelectronic devices towards a more sustainable, biocompatible and efficient technology. The second is to understand this ubiquitous physicochemical process in life, exploited in many fundamental biological processes such as cell signalling, respiration, photosynthesis or enzymatic catalysis, leading us to a better understanding of disease mechanisms connected to charge diffusion. Extracting electrical signatures from a protein requires optimised methods for tethering the molecules to an electrode surface, where it is advantageous to have precise electrochemical control over the energy levels of the hybrid protein–electrode interface. Here, we review recent progress towards understanding the charge transport mechanisms through protein–electrode–protein junctions, which has led to the rapid development of the new BioMolecular Electronics field. The field has brought a new vision into the molecular electronics realm, wherein complex supramolecular structures such as proteins can efficiently transport charge over long distances when placed in a hybrid bioelectronic device. Such anomalous long-range charge transport mechanisms acutely depend on specific chemical modifications of the supramolecular protein structure and on the precisely engineered protein–electrode chemical interactions. Key areas to explore in more detail are parameters such as protein stiffness (dynamics) and intrinsic electrostatic charge and how these influence the transport pathways and mechanisms in such hybrid devices.  相似文献   

17.
The boundary effect on the electrophoresis of particles covered by a membrane layer is discussed by considering a spherical particle in a spherical cavity under the conditions where the effect of double-layer polarization can be significant. The influence of the key parameters of the system under consideration on the electrophoretic mobility of a particle is investigated. These include the surface potential; the thickness of the double layer; the relative size of the cavity; and the thickness, the fixed charge density, and the friction coefficient of the membrane layer. The fixed charge in the membrane layer of a particle is found to have a significant influence on its electrophoretic behavior. For instance, depending upon the amount of fixed charge in the membrane layer, the mobility of a particle may exhibit a local minimum as the thickness of the double layer varies.  相似文献   

18.
The charge transport through single-molecule electronic devices can be controlled mechanically by changing the molecular geometrical configuration in situ, but the tunable conductance range is typically less than two orders of magnitude. Herein, we proposed a new mechanical tuning strategy to control the charge transport through the single-molecule junctions via switching quantum interference patterns. By designing molecules with multiple anchoring groups, we switched the electron transport between the constructive quantum interference (CQI) pathway and the destructive quantum interference (DQI) pathway, and more than four orders of magnitude conductance variation can be achieved by shifting the electrodes in a range of about 0.6 nm, which is the highest conductance range ever achieved using mechanical tuning.  相似文献   

19.
Transport of monodispersed buoyant 1-mum latex microspheres, dense 1.34-microm montmorillonite particles, Li(+) and Br(-) was investigated in a naturally fractured chalk core with an average equivalent hydraulic aperture of 183 microm. Studied parameters were: tracer arrival time, C/C(0) values, mass recovery, size distribution and the impact of initial concentration. Breakthrough time of both colloidal tracers was faster than that of the soluble tracers. Significantly lower recovery and slightly slower breakthrough time were observed for the clay particles relative to the microspheres, apparently mainly due to the former's higher density, resulting in preferential gravitational settling of the clay particles. However, variable surface charge and nonuniform shape and size of the clay particles may also play a role in the observed differences. From the theoretical scale ratio, the time interval calculation seems to be a major factor in colloid recovery. Clay-particle size fractionation was observed (0.62 vs 1.34 microm at the outflow and inflow, respectively), and there was no significant influence of the initial concentration (100 and 500 mg/L) on transport properties. Our observations indicate that colloid density is a dominant property for their transport in fractures. This work emphasizes the need for caution when the results of studies in which buoyant colloids are used as tracers are extrapolated to natural systems in which clay colloids are present.  相似文献   

20.
《中国化学快报》2021,32(12):3782-3786
Series tunneling across peptides composed of various amino acids is one of the main charge transport mechanisms for realizing the function of protein. Histidine, more frequently found in redox active proteins, has been proved to be efficient tunneling mediator. While how it exactly modulates charge transport in a long peptide sequence remains poorly explored. In this work, we studied charge transport of a model peptide junction, where oligo-alanine peptide was doped by histidine at different position, and the series of peptides were self-assembled into a monolayer on gold electrode with soft EGaIn as top electrode to form molecular junction. It was found that histidine increased the overall conductance of the peptide, meanwhile, its position modulated the conductance as well. Quantitative analysis by transport model and ultraviolet photoelectron spectroscopy (UPS) indicated a sequence dependent energy landscape of the tunneling barrier of the junction. Density-functional theory (DFT) calculation on the electronic structure of histidine doped oligo-alanine peptides revealed localized highest occupied molecular orbital (HOMO) on imidazole group of the histidine, which decreased charge transport barrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号