首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A series of eight pi-conjugated polymers (CPs) composed of phenylenevinylene, phenyleneethynylene, fluorene, and thiophene derivatives have been prepared with bipyridyl or terpyridyl substituents within the pi-conjugated backbone or at side-chain positions. These ligand-modified CPs serve as macromolecular scaffolds for conducting metallopolymers. The optical and photoluminescent properties of the polymers and corresponding copper(II) metallopolymers were investigated. Copper(II) is a highly efficient quencher of CP emission (75-100% quenching). CPs featuring bipyridyl units within the CP backbone are quenched more efficiently than those with terpyridyl units. The copper(II) metallopolymer undergoes reduction to the corresponding copper(I) species upon reaction with nitric oxide, with concomitant changes in integrated emission ranging from a 50% decrease to a 320% increase. The positive emission response is largest when Cu(II) was bound to the CP through bipyridyl units within the backbone, making these materials the best candidates for NO sensing by a turn-on emission mechanism.  相似文献   

2.
A series of D3 (Fe(II), Ru(II), Zn(II), Hg(II)) and D2d (Cu(I), Ag(I), Zn(II)) octupolar metal complexes featuring different functionalized bipyridyl ligands has been synthesized, and their thermal, linear (absorption and emission), and nonlinear optical (NLO) properties were determined. Their quadratic NLO susceptibilities were determined by harmonic light scattering at 1.91 microm, and the molecular hyperpolarizability (beta0) values are in the range of 200-657 x 10(-30) esu for octahedral complexes and 70-157 x 10(-30) esu for tetrahedral complexes. The octahedral zinc(II) complex 1 e, which contains a 4,4'-oligophenylenevinylene-functionalized 2,2'-bipyridine, exhibits the highest quadratic hyperpolarizability ever reported for an octupolar derivative (lambdamax=482 nm, beta1.91(1 e)=870 x 10(-30) esu, beta0(1 e)=657 x 10(-30) esu). Herein, we demonstrate that the optical and nonlinear optical (NLO) properties are strongly influenced by the symmetry of the complexes, the nature of the ligands (donor endgroups and pi linkers), and the nature of the metallic centers. For example, the length of the pi-conjugated backbone, the Lewis acidity of the metal ion, and the increase of ligand-to-metal ratio result in a substantial enhancement of beta. The contribution of the metal-to-ligand (MLCT) transition to the molecular hyperpolarizability is also discussed with respect to octahedral d6 complexes (M=Fe, Ru).  相似文献   

3.
报导了四种新的双核钴(Ⅱ)配合物,即[Co2(4I-TPHA)(L)4](COl4)(4I-TPHA=四碘代对苯二甲酸根阴离子,L=1,10菲咯啉(phen)(1),5-硝基-,10菲咯啉(NO2-phen)(2),2,2′-联吡啶(bpy)(3)和4,4′-二甲基-2,2′-联吡啶(Me2bpy)(4)的合成和表征,配合物的磁性研究表明双核钴(Ⅱ)离子间有弱的反铁磁性自旋交换相互作用。  相似文献   

4.
A pair of anionic conjugated polyelectrolytes that contain three-ring (phenylene ethynylene) units linked by a single -CH(2)- or -O- tether (P1 and P2, respectively) are studied. The linkers serve to interrupt the π conjugation along the polymer backbone. Fluorescence spectroscopy reveals that P2 forms a fluorescent aggregate in methanol and water; however, the fluorescence of P1 is much weaker in water, and P1 exhibits only weak aggregate fluorescence. Fluorescence quenching of the polymers was examined using methyl viologen (MV(2+)) as a cationic quencher. P1 shows only a weak amplified quenching effect, with a Stern-Volmer quenching constant of K(SV) ≈ 6 × 10(5) M(-1) in methanol. Interestingly, for P2 in methanol, the aggregate emission is strongly quenched with K(SV) ≈ 5 × 10(6) M(-1), which is comparable to the highest quenching efficiency observed for fully π-conjugated polyelectrolytes. By contrast, the monomer emission is quenched much less efficiently, with K(SV) ≈ 2 × 10(5) M(-1). The results are explained by a model in which -O- linked polymer P2 is able to fold into a helical conformation in solution, which facilitates the formation of extended π-stacked aggregates allowing long-distance exciton transport.  相似文献   

5.
Electrocatalytic oxidation of ascorbic acid (AA) at a carbon paste electrode, chemically modified 2,2'-[3,6-dioxa-1,8-octanediylbis(nitriloethylidyne)]-bis-hydroquinone, was thoroughly investigated. The results of cyclic voltammetry, double potential-step chronoamperometry, linear sweep voltammetry and differential pulse voltammetry (DPV) studies were used for the prediction of the mechanism of electrochemical oxidation of AA mediated with 2,2'-[3,6-dioxa-1,8-octanediylbis(nitriloethylidyne)]-bis-hydroquinone at the surface of the modified electrode. The diffusion coefficient (D = 2.45 x 10(-5) cm(2) s(-1)) and the kinetic parameters such as the electron transfer coefficient (alpha = 0.34) were also determined. The results of DPV using the 2,2'-[3,6-dioxa-1,8-octanediylbis(nitriloethylidyne)]-bis-hydroquinone-modified electrode were applied in a highly sensitive determination of AA in drug samples. A linear range of 3.0 x 10(-6) - 1.2 x 10(-4) M and the detection limit (3sigma) 3.8 x 10(-7) M were obtained for DPV determination of AA in buffered pH 7.00 solutions (0.1 M phosphate buffer).  相似文献   

6.
Kang Y  Seward C  Song D  Wang S 《Inorganic chemistry》2003,42(8):2789-2797
To investigate the luminescent and thermal properties of organic compounds with rigid entities, a series of new blue/purple luminescent bridging ligands, 4,4'-(N-7-azaindolyl)diphenylacetylene (5), 4-(N-7-azaindolyl)-4'-(2,2'-dipyridylamino)diphenylacetylene (6), 4,4'-(2,2'-dipyridylamino)diphenylacetylene (7), and 4,4'-(dipyridylamino)diphenylbutadiyne (8) have been synthesized through Pd-mediated Sonogashira coupling. The structures of compounds 6 and 8 were determined by single-crystal X-ray diffraction analyses. Compounds 5-8 are luminescent in solution at room temperature, with emission lambda(max) = 361, 382, 386, and 405 nm, respectively. At 77 K, compounds 5-8 exhibit both fluorescent and phosphorescent emission. The 2,2'-dipyridylamino symmetrically substituted ligand 7 forms a linear dinuclear complex 9 with zinc(II) ions, in which the two pyridyl rings of the dipyridylamino portion are chelated to the metal center. However, with Ag(I) ions, ligand 7 forms a dinuclear complex (10), which displays a macrocyclic structure with only one of the two pyridyl rings from each dipyridylamino portion being coordinated to the silver atom. Both 9 and 10 exhibit luminescence in the near-UV region in CH(2)Cl(2) at room temperature with lambda(max) = 385 and 384 nm, respectively. The fluorescence of 7 can be partially quenched by either Zn(2+) or H(+). The behavior of ligands 8 toward Ag(I) and Zn(II) ions is similar to that of 7.  相似文献   

7.
The excited states of [Ru(bpy)2(deeb)](PF6)2, where bpy is 2,2-bipyridine and deeb is 4,4'-(CO2CH2CH3)2-2,2'-bipyridine, were found to be efficiently quenched by triiodide (I3-) in acetonitrile and dichloromethane. In dichloromethane, I3- was found to quench the excited states by static and dynamic mechanisms; Stern-Volmer analysis of the time-resolved and steady-state photoluminescence data produced self-consistent estimates for the I3- + Ru(bpy)2(deeb)2+ <==> [Ru(II)(bpy)2(deeb)2+,(I3-)]+ equilibrium, K = 51,000 M(-1), and the bimolecular quenching rate constant, kq = 4.0 x 10(10) M(-1) s(-1). In acetonitrile, there was no evidence for ion pairing and a dynamic quenching rate constant of k(q) = 4.7 x 10(10) M(-1) s(-1) was calculated. Comparative studies with Ru(bpy)2(deeb)2+ anchored to mesoporous nanocrystalline TiO2 thin films also showed efficient excited-state dynamic quenching by I3- in both acetonitrile and dichloromethane, kq = 1.8 x 10(9) and 3.6 x 10(10) M(-1) s(-1), respectively. No reaction products for the excited-state quenching processes were observed by nanosecond transient absorption measurements from 350 to 800 nm under any experimental conditions. X-ray crystallographic, IR, and Raman data gave evidence for interactions between I3- and the bpy and deeb ligands in the solid state.  相似文献   

8.
The spectral features of the squarylium dye NN525 in different solutions and its complexation with several metal ions were investigated. The absorbance maximum of the dye is at 669 nm in tetrahydrofuran. This value matches the output of a commercially available laser diode (650 nm), thus making use of such a source practical for excitation. The emission maximum of the dye in tetrahydrofuran is at 676 nm. The addition of either Fe(III) ion or Co(II) ion resulted in fluorescence quenching of the dye. The detection limit is 6.24 x 10(-8) M for Fe(III) ion and 1.55 x 10(-8) M for Co(II) ion. The molar ratio of the metal to the dye was established to be 1:1 for both metal ions. The stability constant Ks of the metal-dye complex was calculated to be 3.14 x 10(6) M(-1) for the Fe-dye complex and 2.64 x 10(5) M(-1) for the Co-dye complex.  相似文献   

9.
We report the synthesis and characterization of five novel phenothiazine-containing cruciforms (5-9). The targets were prepared by a NaH-promoted Horner reaction of tetraethyl(2,5-diiodo-1,4-phenylene)bis(methylene)diphosphonate with 10-hexyl-10H-phenothiazine-3-carbaldehyde. The formed intermediary 3,3'-(1E,1'E)-2,2'-(2,5-diiodo-1,4-phenylene)bis(ethene-2,1-diyl)bis(10-hexyl-10H-phenothiazine) was reacted with several different aromatic alkynes (1-tert-butyl-4-ethynylbenzene, N,N-dibutyl-4-ethynylaniline, 1-ethynyl-3-(trifluoromethyl)benzene, and 1-ethynyl-3,5-bis(trifluoromethyl)benzene) to give the corresponding cruciform fluororphores (XF). The XFs were fully characterized by NMR and IR spectroscopy and then exposed to trifluoroacetic acid as well as to several metal triflates. The XFs show dramatic shifts in emission and to a lesser extent in absorption when exposed to magnesium triflate or zinc triflate. In the case of magnesium triflate, a blue shift in emission was observed; in contrast, addition of zinc triflate results in either quenching or a red-shifted emission. Due to the electronic situation, these XFs display spatially separated frontier molecular orbitals, allowing the HOMO or the LUMO of the XFs to be addressed independently by addition of zinc or magnesium ions. Phenothiazine XFs may have potential in array-type sensory applications for metal cations.  相似文献   

10.
The 2,2'-azobis(isobutyronitrile)(AIBN)-induced autoxidation of gamma-terpinene (TH) at 50 degrees C produces p-cymene and hydrogen peroxide in a radical-chain reaction having HOO* as one of the chain-carrying radicals. The kinetics of this reaction in cyclohexane and tert-butyl alcohol show that chain termination involves the formal HOO. + HOO. self-reaction over a wide range of gamma-terpinene, AIBN, and O2 concentrations. However, in acetonitrile this termination process is accompanied by termination via the cross-reaction of the terpinenyl radical, T., with the HOO. radical under conditions of relatively high [TH] (140-1000 mM) and low [O2] (2.0-5.5 mM). This is because the formal HOO. + HOO. reaction is comparatively slow in acetonitrile (2k approximately 8 x 10(7) M(-1) s(-1)), whereas, this reaction is almost diffusion-controlled in tert-butyl alcohol and cyclohexane, 2k approximately 6.5 x 10(8) and 1.3 x 10(9) M(-1) s(-1), respectively. Three mechanisms for the bimolecular self-reaction of HOO. radicals are considered: 1) a head-to-tail hydrogen-atom transfer from one radical to the other, 2) a head-to-head reaction to form an intermediate tetroxide, and 3) an electron-transfer between HOO. and its conjugate base, the superoxide radical anion, O2-.. The rate constant for reaction by mechanism (1) is shown to be dependent on the hydrogen bond (HB) accepting ability of the solvent; that by mechanism (2) is shown to be too slow for this process to be of any importance; and that by mechanism (3) is dependent on the pH of the solvent and its ability to support ionization. Mechanism (3) was found to be the main termination process in tert-butyl alcohol and acetonitrile. In the gas phase, the rate constant for the HOO. + HOO. reaction (mechanism (1)) is about 1.8 x 10(9) M(-1) s(-1) but in water at pH< or =2 where the ionization of HOO. is completely suppressed, this rate constant is only 8.6 x 10(5) M(-1) s(-1). The very large retarding effect of water on this reaction has not previously been explained. We find that it can be quantitatively accounted for by using Abraham's HB acceptor parameter, beta(2)(H), for water of 0.38 and an estimated HB donor parameter, alpha(2)(H), for HOO. of about 0.87. These Abraham parameters allow us to predict a rate constant for the HOO. + HOO. reaction in water at 25 degrees C of 1.2 x 10(6) M(-1) s(-1) in excellent agreement with experiment.  相似文献   

11.
A sequence of three metal-catalysed aryl coupling reactions leads to the new ligand 4'-(4-N,N-diphenylaminophenyl)-2,2':6',2"-terpyridine, the intense ICT emission of which undergoes a large red-shift upon binding of zinc ions, providing a unique response over other common metal ions.  相似文献   

12.
West KJ  Pflaum RT 《Talanta》1986,33(10):807-810
The chelating ligand, 2,2'-pyridil bis(2-quinolylhydrazone), has been used for the spectrophotometric determination of zinc and cadmium in synthetic samples. The molar absorptivities of these metal complexes in 80% ethanol-water solution at pH 8 were found to be 4.60 x 10(4) and 5.10 x 10(4) 1.mole(-1).cm(-1) for zinc and cadmium respectively. Beer's law was obeyed for metal-ion concentrations between 1.0 x 10(-6) and 2.5 x 10(-5)M. The limits of detection were found to be 52 and 79 ng ml for zinc and cadmium respectively. The complexes fluoresced in 80% ethanol-water at pH 8 for zinc and at pH 10 for cadmium. The linear range for fluorescence as a function of metal-ion concentration was found to be 5 x 10(-7)-5 x 10(-6)M for both zinc and cadmium. Transition-metal ions interfere severely with both the spectrophotometric and fluorimetric determinations, and must be removed beforehand. An ion-exchange procedure is suitable for this.  相似文献   

13.
A new symmetric polioxo ethylene chain fluorescent probe containing 2-aminoanthracene bichromophoric as the terminal group for the alkaline earth metal cation, 2,2'-[oxybis(3-oxapentamethyleneoxy)]-bis[N-(2-anthryl)benzamide)] (1), has been synthesized. The photophysical properties of 1 have been studied by means of absorption, fluorescence spectroscopy, and (1)H NMR. The difference in emission spectra response to concentration of model compound 2-acetamido-anthracene and 1 in acetonitrile implies that intermolecular excited dimers is likely to occur. Fluorescence decay profiles of 2-acetamido-anthracene can be described by a biexponential fit, while three lifetimes, two of which are similar as those of 2-acetamido-anthracene, are found for 1. The third lifetime might be attributed to intramolecular excited dimers. Complex formation with alkaline earth metal ions are investigated in acetonitrile as solvent via fluorimetric titrations. Fluorescence intensity trend of the complex with Mg(2+) differed from those of other alkaline earth metal ions. The compound forms 1:2 (ligand/Mg(2+)) complex with Mg(2+) while formed 1:1 complexes with Ca(2+), Sr(2+), and Ba(2+), producing large hypochromic shifts in the emission spectra and significant cation-induced fluorescence amplifications. On the contrary, the addition of Ca(2+), Sr(2+), or Ba(2+) lead to a decrease in the fluorescence emission first, then an increase and blue shift in emission could be found at the end.  相似文献   

14.
Ligand-capped gold nanoparticles were synthesized by capping monothiol derivatives of 2,2'-dipyridyl onto the surface of Au nanoparticles (Au-BT). The average size of the metal core is around 4 nm, with a shell of approximately 340 bipyridine ligands around the Au nanoparticle. The high local concentration of the chelating ligands ( approximately 5 M) around the Au nanoparticle makes these particles excellent ion sponges, and their complexation with Eu(III)/Tb(III) ions yields phosphorescent nanomaterials. Absorption spectral studies confirm a 1:3 complexation between Eu(III)/Tb(III) ions and bipyridines, functionalized on the surface of Au nanoparticles. The red-emitting Au-BT:Eu(III) complex exhibits a long lifetime of 0.36 ms with six line-like emission peaks, whereas the green-emitting Au-BT:Tb(III) complex exhibits a lifetime of 0.7 ms with four line-like emission peaks. These phosphorescent nanomaterials, designed by linking BT:Eu(III) complexes to Au nanoparticles, were further utilized as sensors for metal cations. A dramatic decrease in the luminescence was observed upon addition of alkaline earth metal ions (Ca(2+), Mg(2+)) and transition metal ions (Cu(2+), Zn(2+), Ni(2+)), resulting from an isomorphous substitution of Eu(III) ions, whereas the luminescence intensity was not influenced by the addition of Na(+) and K(+) ions. Direct interaction of bipyridine-capped Au nanoparticles with Cu(2+) ions brings the nanohybrid systems closer, leading to the formation of three-dimensional superstructures. Strong interparticle plasmon interactions were observed in these closely spaced Au nanoparticles.  相似文献   

15.
陈新斌  杨艳 《有机化学》2001,21(4):289-293
首次报道了新型Schiff碱双核配合物-双[N,N"-亚烃基-2,2'(苯亚甲基)二(3,4-二甲基吡咯-5醛缩亚胺)]合双锰及双铁配合物的合成方法及光谱特征。  相似文献   

16.
The synthesis of a series of chiral nonracemic and C2-symmetric 2,2'-bipyridyl ligands (R = Me, i-Pr and Ph) as well as the syntheses of the corresponding unsymmetric 2,2'-bipyridyl ligands (R = Me and Ph) is described. These bipyridyl ligands were prepared, in a notably direct and modular fashion, from the readily available and corresponding 2-chloropyridine acetals (R = Me, i-Pr and Ph). The bipyridyl ligands were evaluated in copper(I)-catalyzed cyclopropanation reactions of styrene with the ethyl and t-butyl esters of diazoacetic acid. The stereoselectivities, as well as the yields of the cyclopropanation reactions, were dependant on the ratio of the bipyridyl ligands and copper triflate that was employed. The best result was obtained in the asymmetric cyclopropanation reaction of styrene and tert-butyl diazoacetate with the C2-symmetric bipyridyl ligand (R = i-Pr). This afforded the corresponding trans-cyclopropane in good diastereoselectivity (4 : 1) and in moderate enantioselectivity (44% ee). The X-ray structure determination of a complex formed between the C2-symmetric 2,2'-bipyridyl ligand (R = Ph) and copper(I) chloride showed that two bipyridyl ligands had coordinated to the copper(I) ion. This information, along with the results of a series of cyclopropanation reactions and NMR data, led to the conclusion that the 2,2'-bipyridyl ligands had the propensity to form catalytically inactive bis-ligated copper(I) species in solution that were in equilibrium with catalytically active copper(i) triflate and the desired mono-ligated copper(I) species. Moreover, it was observed that the complex of the bipyridyl ligand (R = Ph) and copper(I) chloride had a particularly large optical rotation (sodium D-line). The maximum positive optical rotation was subsequently found to be +1.1 x 10(4) at 304 nm and the maximum negative optical rotation was -1.3 x 10(4) at 329 nm.  相似文献   

17.
In this work, a mesoporous silica has been chemically modified with 5-mercapto-1-methyl-1-H-tetrazol using the homogeneous route (MTTZ-HMS). This synthetic route involved the reaction of 5-mercapto-1-methyl-1-H-tetrazol with 3-chloropropyltriethoxysilane, prior to immobilization on the support. The resulting material has been characterized and employed as solid phase extractant for Pb(II). The effect of several variables (stirring time, pH, temperature, metal concentration, presence of other metals) has been studied using batch and column techniques. In batch experiments, 15 min stirring time, 55 degrees C and pH 8 were the optimal conditions for Pb(II) adsorption. In column experiments, sorption was quantitative for 1000 mL of 2.41 x 10(-4 )mM of Pb(II) solution and adsorbed ions were eluted out by 5 mL of 1 M HCl (preconcentration factor of 200). Spiked tap water was used for the preconcentration and determination of Pb(II) by flame atomic absorption spectrometry, and a 100% recovery was obtained. The LOD and LOQ values of the proposed method were found to be 3.52 x 10(-3) and 4.20 x 10(-3 )mM, respectively. The RSD for three preconcentration experiments was found to be 相似文献   

18.
Sequence-selective DNA cleavage by a chimeric metallopeptide   总被引:3,自引:0,他引:3  
A chimeric metallopeptide derived from the sequences of two structurally superimposable motifs was designed as an artificial nuclease. Both DNA recognition and nuclease activity have been incorporated into a small peptide sequence. P3W, a 33-mer peptide comprising helices alpha2 and alpha3 from the engrailed homeodomain and the consensus EF-hand Ca-binding loop binds one equivalent of lanthanides or calcium and folds upon metal binding. The conditional formation constants (in the presence of 50 mM Tris) of P3W for Eu(III) (K(a) = (2.1 +/- 0.1) x 10(5) M(-1)) and Ce(IV) (K(a) = (2.6 +/- 0.1) x 10(5) M(-1)) are typical of isolated EF-hand peptides. Circular dichroism studies show that 1:1 CeP3W is 26% alpha-helical and EuP3W is up to 40% alpha-helical in the presence of excess metal. The predicted helicity of the folded peptide based on helix length and end effects is about 50%, showing the metallopeptides are significantly folded. EuP3W has considerably more secondary structure than our previously reported chimeras (Welch, J. T.; Sirish, M.; Lindstrom, K. M.; Franklin, S. J. Inorg. Chem. 2001, 40, 1982-1984). Eu(III)P3W and Ce(IV)P3W nick supercoiled DNA at pH 6.9, although EuP3W is more active at pH 8. CeP3W cleaves linearized, duplex DNA as well as supercoiled plasmid. The cleavage of a 5'-(32)P-labeled 121-mer DNA fragment was followed by polyacrylamide gel electrophoresis. The cleavage products are 3'-OPO(3) termini exclusively, suggesting a regioselective or multistep mechanism. In contrast, uncomplexed Ce(IV) and Eu(III) ions produce both 3'-OPO(3) and 3'-OH, and no evidence of 4'-oxidative cleavage termini with either metal. The complementary 3'-(32)P-labeled oligonucleotide experiment also showed both 5'-OPO(3) and 5'-OH termini were produced by the free ions, whereas CeP3W produces only 5'-OPO(3) termini. In addition to apparent regioselectivity, the metallopeptides cut DNA with modest sequence discrimination, which suggests that the HTH motif binds DNA as a folded domain and thus cleaves selected sequences. The de novo artificial nuclease LnP3W represents the first small, underivatized peptide that is both active as a nuclease and sequence selective.  相似文献   

19.
Zhu X  Lever SZ 《Electrophoresis》2002,23(9):1348-1356
In this study, the kinetic behaviors of four lanthanide ions, Sm(3+), Dy(3+), Yb(3+) and Lu(3+), when mixed with a polyazamacrocyclic chelating agent 1,4,7,10-tetraazacyclododecane-N,N',N",N"'-tetraacetic acid (DOTA), were investigated by capillary electrophoresis (CE) in the pH range of 2.0-6.0. At pH 2.0, the formation rate of DOTA-metal complex is extremely low as very little complex was detected after 5 days reaction, whereas almost no free DOTA was found in the mixture of metal ion and DOTA after 4 min at pH 6.0. The second-order kinetic association rate constants of the four lanthanide ions chelates at pH 4.2 were calculated as 1.44 x 10(-2) mM(-1)min(-1), 5.20 x 10(-2) mM(-1)min(-1), 4.56 x 10(-2) mM(-1)min(-1) and 4.54 x 10(-2) mM(-1)min(-1) at 25 degrees C with CE, respectively. In addition, the stability constants of the four lanthanide ions with DOTA were determined by CE at pH 3.0 where approximately 80-90% of the metal ions were associated with DOTA at 25 degrees C. The measured stability constants (log K(f)) of the four DOTA-metal complexes were 23.36, 23.93, 23.39 and 23.06, respectively, and correlated well with published data obtained by different methods. The percentage of metal ion bound with DOTA was evaluated as a function of reactant concentration in pH 6.0 buffer. After adding excess strong acid (0.1 M HCl) to each solution of DOTA-metal was formed at pH 6.0, no released DOTA was detected after 24 h; thus, dissociation of these lanthanide complexes did not occur under strongly acidic conditions. The Ln(DOTA)(-) species for the four DOTA-metal complexes were characterized by electrospray ionization-mass spectroscopy (ESI-MS), and the results correlated with proposed structures.  相似文献   

20.
A hydrophilic fluorescent derivatization reagent for fatty acids, 4-N-(4-N-aminoethyl)piperazino-7-nitro-2,1,3-benzoxadiazole (NBD-PZ-NH(2)), was designed and synthesized. NBD-PZ-NH(2) possesses not only a fluorophore and a reacting group but also a positive charge group and, thus, was hydrophilic and suitable for application to capillary electrophoresis. NBD-PZ-NH(2) reacted with fatty acids in the presence of triphenylphosphine (TPP) and 2,2'-dipyridyl disulfide (DPDS) at room temperature within 10 min. The derivatives were strongly fluoresced and were positively charged at pH below 3. The derivatives of C4-C20 fatty acids were separated within 10 min in 50% acetonitrile in water containing 30 mM ammonium acetate and 1.0 M acetic acid by capillary electrophoresis with laser-induced fluorescence (CE-LIF) detection. The detection limits attained were 6.5 nM (signal-to-noise ratio of 3). It is proposed that NBD-PZ-NH(2) is a prominent derivatization reagent for fatty acids which is suitable for CE-LIF application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号