首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 258 毫秒
1.
影响CeO2纳米粉体尺寸的液相反应因素研究   总被引:4,自引:0,他引:4  
较为系统地论述了沉淀法制备高纯度CeO2纳米粉体过程中影响颗粒团聚的液相工艺参数.实验结果表明, 在如下液相反应条件下制备得到的纳米CeO2平均尺寸小于10 nm; Ce(NO3)4溶液浓度为0.13~0.18 mol*L-1, NH3*H2O浓度为6.8 mol*L-1, 反应温度15~30 ℃, VCe(NO3)4∶VNH3*H2O=1.5∶20~2.5∶20, 分散剂选用乙醇+异丙醇.  相似文献   

2.
以Ce(NO3)3·6H2O,ZrO(NO3)2·2H2O和Bi(NO3)3·5H2O为原料,氨水为沉淀剂,双氧水为氧化剂,在pH值为9.5~10.5条件下,采用氧化共沉淀法制备了不同比例组成的复合氧化物Ce1-x-yZrxBiyOσ.通过XRD,BET和Raman表征可知,该法制备的样品550 ℃焙烧后均可形成固溶体,当x0.15,y0.2时,高温焙烧后易分相.H2-TPR和CO脉冲测试结果显示Ce0.65Zr0.15Bi0.2Oσ较易被还原,且1050℃焙烧4 h后储氧量仍可达625 μmol·(g cat)-1,这是由于Bi3+取代了Ce0.65Zr0.15Bi0.2Oσ中部分Ce4+和Zr4+形成氧空位,增强了体相晶格氧的移动性,从而使Ce0.65Zr0.15Bi0.2Oσ固溶体中的Ce4+和Bi3+同时被还原.  相似文献   

3.
以Ce(NO3)3.6H2O,ZrO(NO3)2.2H2O和Bi(NO3)3.5H2O为原料,氨水为沉淀剂,双氧水为氧化剂,在pH值为9.5~10.5条件下,采用氧化共沉淀法制备了不同比例组成的复合氧化物Ce1-x-yZrxBiyOσ。通过XRD,BET和Raman表征可知,该法制备的样品550℃焙烧后均可形成固溶体,当x0.15,y0.2时,高温焙烧后易分相。H2-TPR和CO脉冲测试结果显示Ce0.65Zr0.15Bi0.2Oσ较易被还原,且1050℃焙烧4 h后储氧量仍可达625μmo.l(g cat)-1,这是由于Bi3+取代了Ce0.65Zr0.15Bi0.2Oσ中部分Ce4+和Zr4+形成氧空位,增强了体相晶格氧的移动性,从而使Ce0.65Zr0.15Bi0.2Oσ固溶体中的Ce4+和Bi3+同时被还原。  相似文献   

4.
以Sr(NO3)2和HfOCl2·8H2O为原料,乙醇/水作溶剂,KOH为矿化剂,Ce(NO3)3·6H2O作为激活剂,用一元醇热法制备了掺杂Ce3+的SrHfO3超微球粒子。用XRD、SEM、荧光光度计分析了粒子合成过程的物相变化、形貌特征及激发和发射光谱。结果表明:在nSr∶nHf=1∶1,VC2H5OH∶VH2O=4∶1,水热合成温度140℃,反应时间4 h,pH=13.5的条件下,获得SrHfO3∶Ce形貌为微球、分散均匀的粒子,粒径约900 nm。当Ce3+掺杂浓度为0.7mol%时发光强度最大。  相似文献   

5.
固相反应两步法制备纳米CeO2及其机制研究   总被引:9,自引:0,他引:9  
采用H2C2O4·2H2O和Ce(NO3)3·6H2O进行了低热固相反应. 第一步合成前驱物Ce2(C2O4)3·10H2O, 第二步加入模板剂NaCl, 于800 ℃进行热分解反应. 对分解产物进行了XRD测定和SEM, TEM分析. 结果表明, 得到了表面形貌为短节状、粒度分布均匀、无明显团聚现象、平均粒径在90 nm左右的纳米粉体, 同时对制备反应进行了热力学和动力学的初步研究.  相似文献   

6.
以La-Al2O3(La稳定的γ-Al2O3)、Ce0.63Zr0.37O2(OSM1)及Ce0.5Zr0.3Mn0.2O2(OSM2)为载体, Pt为活性组分, 制备了Pt质量分数为1%的整体式催化剂. 研究了不同载体负载的催化剂对CH4选择催化还原NO反应的性能, 并利用XRD、H2-TPR和XPS对催化剂进行了表征. 结果表明, Pt/OSM1和Pt/OSM2催化剂在氧含量为0.8%时对CH4催化还原NO具有优异的净化性能, Pt/OSM1催化剂上500 ℃时, CH4和NO均达到100%转化; Pt/OSM2催化剂上500 ℃时, CH4和NO的转化率分别达到73%和100%; 而 Pt/ La-Al2O3催化剂只在O2含量较低时(0.4%以下)具有较好活性, 500 ℃以上才可使CH4和NO完全转化. H2-TPR结果表明, Pt与OSM1和OSM2存在的相互作用导致低温还原物相生成. Pt与OSM的相互作用及OSM的储氧性能使催化剂在过量氧存在下对CH4催化还原NO具有优异性能.  相似文献   

7.
固定n(Ce)/n(Zr)比为0.67/0.33,用共沉淀法制得一系列CeO2-ZrO2-Al2O3固溶体.采用这些固溶体作载体,以Fe2O3为活性组分,用浸渍法制备了一系列催化剂.BET结果显示,将适量Ce0.67Zr0.33O2引入到Al2O3载体中有助于催化剂保持较高的比表面积.TPR结果显示,载体中引入适量的Ce0.67Zr0.33O2可以改善催化剂的氧化还原性能.XRD结果表明,Fe2O3在CeO2-ZrO2-Al2O3载体上呈现出良好的分散状况,老化前后催化剂的晶相结构基本无明显变化.特别是当载体中m(Ce0.67Zr0.33O2)∶m(Al2O3)的值为1∶2时,Fe2O3/CeO2-ZrO2-Al2O3催化剂在甲烷催化燃烧中显示出最佳的催化性能和抗高温老化性能.  相似文献   

8.
Ce0.67Zr0.33O2对CH4燃烧催化剂Fe2O3/Al2O3的改性作用   总被引:1,自引:0,他引:1  
固定n(Ce)/n(Zr)比为0.67/0.33, 用共沉淀法制得一系列CeO2-ZrO2-Al2O3固溶体. 采用这些固溶体作载体, 以Fe2O3为活性组分, 用浸渍法制备了一系列催化剂. BET结果显示, 将适量Ce0.67Zr0.33O2引入到Al2O3载体中有助于催化剂保持较高的比表面积. TPR结果显示, 载体中引入适量的Ce0.67Zr0.33O2可以改善催化剂的氧化还原性能. XRD结果表明, Fe2O3在CeO2-ZrO2-Al2O3载体上呈现出良好的分散状况, 老化前后催化剂的晶相结构基本无明显变化. 特别是当载体中m(Ce0.67Zr0.33O2)∶m(Al2O3)的值为1∶2时, Fe2O3/CeO2-ZrO2-Al2O3催化剂在甲烷催化燃烧中显示出最佳的催化性能和抗高温老化性能.  相似文献   

9.
测定了Ce0.6Zr0.35Y0.05O2 和Pr0.6Zr0.35Y0.05O2两种固熔体的晶体结构,氧的储存以及氧化-还原性能. XRD结果表明 Ce0.6Zr0.35Y0.05O2主要以立方的Ce0.75Zr0.25O2结构形式存在,此外还有少量的ZrO1.87. 而Pr0.6Zr0.35Y0.05O2则主要以立方的Pr0.60Zr0.40O2结构形式存在.这两种固熔体粒子都为纳米级,具有多孔和较大表面积的特征.将Y3+掺杂到Ce0.6Zr0.4O2 或Pr0.6Zr0.4O2晶格中,可以提高氧空位, Ce4+或Pr4+浓度. H2(和CO)-O2滴定和TPR-再氧化试验表明在这两种固熔体中分别存在着可逆的Ce4+/Ce3+或Pr4+/Pr3+氧化还原能力.基于试验结果,我们得出以下结论,将Y3+掺杂到Ce0.6Zr0.4O2 或Pr0.6Zr0.4O2晶格中可以(1)提高晶格氧的活动能力,(2)提高Ce4+或Pr4+浓度,(3)提高氧的储存能力和(4)Pr0.6Zr0.35Y0.05O2在Redox性能, 晶格氧的活动能力和氧的储存能力等方面优于Ce0.6Zr0.35Y0.05O2.  相似文献   

10.
Cu-Ce-Zr-O复合氧化物催化剂的制备与三效催化性能   总被引:5,自引:0,他引:5  
采用柠檬酸溶胶凝胶法制备了Cu-Ce-Zr-O复合氧化物催化剂. 当Ce∶Zr∶Cu摩尔比为2∶8∶5时,制得的Ce0.2Zr0.8Cu0.5-O2-λ催化剂具有较佳的三效催化性能和较宽的工作窗口. 当空燃比为1.33(富氧)时, CO, C3H6和NO的起燃温度分别为183, 257和236 ℃, 并且当温度高于340 ℃时都能完全转化; 催化剂经高温老化后CO, C3H6和NO的起燃温度仍较低,分别为225, 350和350 ℃. X射线衍射、X射线光电子能谱和程序升温还原的结果表明,部分Cu进入 Ce-Zr固溶体形成Cu-Ce-Zr固溶体; Cu与Ce产生协同效应使Ce0.2Zr0.8Cu0.5O2-λ催化剂的低温活性明显提高,并且在贫燃情况下具有更高的三效催化性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号