首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
As part of a mass spectrometric investigation of the binding properties of sulfonamide anion receptors, an atmospheric pressure chemical ionization mass spectrometric (APCI-MS) method involving direct infusion followed by thermal desorption was employed for identification of anionic supramolecular complexes in dichloromethane (CH2Cl2). Specifically, the dansylamide derivative of tris(2-aminoethyl)amine (tren) (1), the chiral 1,3-benzenesulfonamide derivatives of (1R,2S)-(+)-cis-1-amino-2-indanol (2), and (R)-(+)-bornylamine, (3), were shown to bind halide and nitrate ions in the presence of (n−Bu)4N+X (X = Cl, NO3, Br, I). Solutions of receptors and anions in CH2Cl2 were combined to form the anionic supramolecular complexes, which were subsequently introduced into the mass spectrometer via direct infusion followed by thermal desorption. The anionic supramolecular complexes [M+X], (M=13, X=Cl, NO3, Br, I) were observed in negative mode APCI-MS along with the deprotonated receptors [M−H]. Full ionization energy of the APCI corona pin (4.5 kV) was necessary for obtaining mass spectra with the best signal-to-noise ratios.  相似文献   

2.
The adsorption of Cl, Br, and I ions from their 0.1 M solutions in dimethyl formamide at renewable liquid Hg- and Ga-electrodes was studied under similar experimental conditions by the differential-capacitance and jet-electrode methods. The data obtained points out to a strong effect of the metal nature on adsorption parameters and the halogenide-ion surface activity series. The halogenide-ion surface activity at the Hg-electrode increased in the following sequence: Cl < Br < I; at the Ga-electrode, in the reverse sequence: I < Br < Cl. The results are explained qualitatively in terms of the Andersen-Bockris model. It follows from the obtained data that (1) the free energy of the metal-halogenide-ion interaction increases in the following sequence: I < Br < Cl; (2) the free energy of the Ga-halogenide-ion interaction exceeds that of the Hghalogenide-ion interaction; and (3) the difference of the Cl, Br, and I ions interaction with the metals increased significantly when passing from Hg to Ga-electrode.  相似文献   

3.
Four new mononuclear Pd(II) complexes of the type [PdX2(tdmPz)] {X = Cl (1); Br (2); I (3); SCN (4); tdmPz = 1-thiocarbamoyl-3,5-dimethylpyrazole} have been synthesized and characterized by elemental analysis, IR spectroscopy, 1H and 13C{1H}-NMR experiments. The thermal behavior of the complexes 14 has been investigated by means of thermogravimetry (TG) and differential thermal analysis (DTA). From the initial decomposition temperatures, the thermal stability of the complexes can be ordered in the sequence: 3 < 4  2 < 1. The final products of the thermal decompositions were characterized as metallic palladium by X-ray powder diffraction.  相似文献   

4.
It has been found that halide ions (Cl, Br, and I) in aqueous solution initiate structural transformation of silver trigonal prisms (20?50 nm in size) in the sequence prism ? disc ? sphere. It has been demonstrated that the change in structure is caused by the formation of poorly soluble silver salts on nanoprisms and occurs by the electrochemical mechanism. The efficiency of the process is dictated by the nature of the halide ion.  相似文献   

5.
6.
Type 304 stainless steel specimens artificially contaminated with CsCl solution were treated with KOH solution and KNO3 solution, respectively. Cs+ ion removal tests by a Q-switched Nd:YAG laser at 1064 nm at a given fluence of 57.3 J/cm2 were performed. The surface morphology and the relative atomic mole ratio of the specimen surface were investigated by SEM and EPMA. The order of Cs+ ion removal efficiency of laser was no-treatment < KOH < KNO3 during the 42 shots. From the investigation of XPS peaks around 532.7 and 292.9 eV, KNO3 on a surface of specimen was found to be fully decomposed during the laser irradiation. It was suggested that Cs2O particulates formed by the reaction between the reactive oxygen generated from the nitrate ion and Cs+ ion on the metal surface could be easily suspended. For the KOH system, FeOOH was formed during the laser irradiation and it changed into Fe2O3. It was also suggested that Cs2O particulates were formed by the reaction between the reactive oxygen generated from the decomposition of K2O and Cs+ ion on the metal surface..  相似文献   

7.
The ionic complexes simultaneously containing negatively charged coordination structures of metal phthalocyanines and fullerene anions, viz., {MnIIPc(CH3CH2S?) x ·(I?)1?x }·(C60 ·?)· ·(PMDAE+)2·C6H4Cl2 (PMDAE is N,N,N′,N′,N′-pentamethyldiaminoethane, x = 0.87, 1) and {ZnIIPc(CH3CH2S?)y·(I?)1?y }2·(C60 ?)2·(PMDAE+)4·(C6H4Cl2) (y = 0.5, 2) were synthesized. The both compounds were obtained as single crystals, which made it possible to study their crystal structures. In complex 1, the fullerene radical anions form honeycomb-like layers in which each fullerene has three neighbors with center-to-center interfullerene distances of 10.13–10.29 Å. Rather long distances between the C60 ·? radical anions results in the retention of monomeric C60 ·? in this complex down to the temperature of 110(2) K. In complex 2, fullerenes form dimers (C60 ?)2 bonded by one C-C bond. The dimers are packed in corrugated honeycomb-like layers with interfullerene center-to-center distances of 9.90–10.11 Å. Manganese(II) and zinc(II) phthalocyanines coordinate iodide and ethanethiolate anions to the central metal atom to form unusual negatively charged coordination structures MIIPc(An?) (An? is anion) packed in dimers {MIIPc(An?)}2 with a short distance between the phthalocyanine planes (3.14 Å in 1 and 3.27 Å in 2). The pthalocyanine dimers also form layers with the PMDAE+ cations, and these layers alternate with the fullerene layers. The packing of spherical fullerenes with planar phthalocyanine molecules is attained by the insertion of fullerenes between the phenylene groups of phthalocyanines. The π-π-interactions of the porphyrin macrocycle with five- or six-membered fullerene rings are characteristic of the earlier studied ionic porphyrin and fullerene complexes. Such interactions are not observed for ionic complexes 1 and 2.  相似文献   

8.
The structures of a closo-hedral cluster (HAlNH)12 and endohedral complexes 4/2X@(HAlNH)12 (X = N, P, As, C, Si) are studied by density functional theory (DFT) at the B3LYP/6-31G(d) level. The geometries, natural bond orbital (NBO), vibrational frequency (ν1), energetic parameters, magnetic shielding constants (σ), and nucleus independent chemical shifts (NICSs) are discussed. It is found that all guest species are minima at the cage center. Inclusion energies (ΔE inc) of all species are negative except those of 4N and 4/2P. In all species, the endohedral quartet states (4X) are energetically less favorable than their doublet states (2X). The calculations predict that caged X states only donate <0.50 e to the cage and preserve their unencapsulated ground states.  相似文献   

9.
The solubility in the 2Na+,Mg2+‖2Cl, 2ClO3-H2O system was studied at 20 and 100°C and the solubility diagrams were plotted. New compounds were not found to form in the title quaternary reciprocal system. The sodium chloride field was observed to expand with rising temperature.  相似文献   

10.
Summary.  The diagram of the ternary system Mg2+/Cl, SO4 2−–H2O was established at 15°C by means of analytical and conductimetric measurements. Three compounds were found in this diagram, which are MgSO4·6H2O, MgSO4·7H2O, and MgCl2·6H2O. The solubility field of MgSO4·7H2O is important whereas those of MgSO4·6H2O and MgCl2·6H2O are small. The compositions (mass-%) of the two invariant points determined by the two methods are: MgSO4:MgCl2=2.73:33.80 and MgSO4: MgCl2=3.38:28.91. Both the measured and the calculated isotherm at 15°C have been used for modelling of the diagram Mg2+/Cl, SO4 2−–H2O between 0 and 35°C. The polythermal invariant point was approximately located between 15 and 10°C.  Corresponding author. E-mail: ariguib@planet.tn Received October 16, 2002; accepted (revised) December 3, 2002 Published online April 24, 2003 RID="a" ID="a" Dedicated to Prof. Dr. Heinz Gamsj?ger on the occasion of his 70th birthday  相似文献   

11.
KTiOPO4 crystals, both pure and doped with rubidium Rb+ and fluorine F ions, were grown in temperature range from 1060 to 846°С from salt solvent containing potassium metaphosphate КРО3 and potassium orthophosphate К3РО4 by using a Czochralski modified method. Potassium–sodium titanyl phosphate crystals were obtained from KTiOPO4 crystals by the potassium isomorphic replacement with sodium; to this purpose, sodium chemical diffusion from NaNO3 melt was used. Their ionic conductivity was studied by the electrochemical impedance spectroscopy method. The KTiOPO4 crystal doping with rubidium and sodium ions was shown to lower the conductivity, whereas the doping with fluorine ions results in increased conductivity.  相似文献   

12.
13.
The solubility of hexadecyltrimethylammonium tetrachloroaurate (CTA·AuCl4) in water was measured at different temperatures of 288.2, 293.2, 298.2, 303.2, and 308.2 K. The enthalpy change associated with the formation of the CTA·AuCl4 precipitate was estimated on the basis of the van’t Hoff equation and was found to be −42.5 ± 2.8 kJ mol−1 at 298.2 K. The calorimetric enthalpy change for the CTA·AuCl4 precipitate formation was directly determined by isothermal titration calorimetry performed at 298.2 K and was found to agree well with that estimated from the van’t Hoff equation.  相似文献   

14.

Abstract  

First principle density-functional theory calculations have been carried out on the interaction of I and I3 with TiO2 anatase surfaces, modeled by finite clusters that range in size from 48 to 180 atoms. The total energy per TiO2 unit and the HOMO-LUMO gaps decrease with increasing the size of the clusters. Both redox species (I and I3 ) are strongly adsorbed on the TiO2 surface with the adsorbtion of I being stronger. Adsorption of triiodide leads to its dissociation. The positions of the HOMO and LUMO of the adsorbed systems shift negatively from their respective cluster values. Solvation effects have been modeled using the CPCM model. Introducing solvent reduces the shifting of HOMO and LUMO. Implications for dye-sensitized solar cells (DSSC) are discussed. Both the HOMO-LUMO shifting and the strong adsorption might affect the performance of the cell.  相似文献   

15.
The nature of [HB≡CH], [H2B=CH2], and boratabenzene interactions with alkaline and alkaline earth metals are studied by ab initio calculations. The interaction energies are calculated at the B3LYP/6-311++G(d,p) level. The calculations suggest that the cation size and charge are two influential factors that affect the nature of the interaction. AIM and NBO analyses of the complexes indicate that the variation of densities and the extent of charge transfers upon complexation correlate well with the obtained interaction energies.  相似文献   

16.
17.
Supramolecular pillared oxides were prepared through the intercalation of M2+ cations into a MnO2 host matrix by the method of ion exchange between the precursor δ-K x MnO2 and the corresponding guest. The materials M-MnO2 crystallize in the hexagonal system, the same structure as the precursor, with a larger interlamellar spacing. In the case of ZrO-MnO2, extended X-ray absorption fine structure (EXAFS) determination indicates that the Zr atom locates between the MnO2 layers forming a stable structure. Compared with the precursor, the cycling property of M-MnO2 was improved distinctly, while the capacity decreased to some degree due to the strong interaction between pillars and the host matrix. Among these pillared materials, ZrO-MnO2 has an advanced reversible capacity of 161.5 mAh·g−1 and improved cycling behavior compared with the precursor.  相似文献   

18.
The complex formation reactions between Mg2+, Ca2+, Sr2+ and Ba2+ metal cations with macrocyclic ligand, 4′-nitrobenzo-15C5, were studied in acetonitrile (AN)-methanol (MeOH) binary mixtures at different temperatures using conductometric method. The results show that 4′-nitrobenzo-15C5 forms 1:1 [ML] complexes with Mg2+, Ca2+ and Sr2+ metal cations in solutions. But in the case of Ba2+ cation a 1:2 [ML2] complex is formed in these solvent systems. The stability of the complexes is sensitive to the solvent composition and a non-linear behavior was observed for variation of logK f of the complexes versus the composition of the binary mixed solvents. The stability constants of complexes decrease suddenly with increasing the concentration of methanol in this binary system. The values of thermodynamic parameters (ΔH c° and ΔS c°) for formation of (4′-nitrobenzo-15C5.Mg)2+, (4′-nitrobenzo-15C5.Ca)2+ and (4′-nitrobenzo-15C5.Sr)2+ complexes were obtained from temperature dependence of the stability constants and the results show that these parameters are affected by the nature and composition of the mixed solvents. A non-linear behavior is observed between the ΔS c° and the composition of the mixed solvents.  相似文献   

19.
The complexation reactions of 4′-nitrobenzo-15-crown-5 (4′NB15C5) with Zn2+, Mn2+, Cr3+ and Sn4+ cations were studied in acetonitrile–ethanol (AN–EtOH) binary solvent mixtures at different temperatures by the electrical conductometry method. The stability constants of the resulting 1:1 complexes were determined from computer fitting of the conductance versus mole ratio data. The results show that the selectivity order of 4′NB15C5 for the metal cations in the AN–EtOH (mol-%AN=76) binary solvent at 298.15 K is: Cr3+>Mn2+≈Zn2+>Sn4+, but the selectivity order changes with the composition of the mixed solvents. A nonlinear relationship was observed between the stability constants (log 10 K f) of these complexes and the composition of the AN–EtOH binary solvents. The corresponding thermodynamic parameters (DHco, DSco)(\Delta H_{\mathrm{c}}^{\mathrm{o}}, \Delta S_{\mathrm{c}}^{\mathrm{o}}) were obtained from the temperature dependence of the stability constants using van’t Hoff plots. The results show that the values and also the sign of these parameters are influenced by the nature and composition of the mixed solvents.  相似文献   

20.
Nucleophilic reactivity of hydroxide and hydroperoxide ions toward ethyl 4-nitrophenyl ethylphosphonate, diethyl 4-nitrophenyl phosphate, 4-nitrophenyl 4-toluenesulfonate, and 4-nitrophenyl dimethylcarbamate in the system H2O2-KOH was studied in aqueous-alcoholic solutions at 25°C. The rate of reactions of both anions with ethyl 4-nitrophenyl ethylphosphonate, diethyl 4-nitrophenyl phosphate, and 4-nitrophenyl dimethylcarbamate and of hydroxide ion with 4-nitrophenyl 4-toluenesulfonate increases with rise in the fraction of the alcohol in mixtures of water with isopropyl and tert-butyl alcohols, while the reaction rate of hydroperoxide ion with 4-nitrophenyl 4-toluenesulfonate decreases. The rate of reactions of both anions with all the above substrates in mixtures of water with ethylene glycol decreases as the fraction of the latter rises. The apparent rate of the reaction of ethyl 4-nitrophenyl ethylphosphonate with anionic nucleophiles in the system H2O2-HO?-HCO 3 ? in water at pH 8.5 almost does not depend on the concentration of ammonium hydrogen carbonate up to a value of 1 M, and it increases when the NH4HCO3 concentration exceeds 1 M. Mixtures of water with the lower monohydric alcohols were recommended for use as components of H2O2-HO?-HCO 3 ? systems for oxidative decomposition of ecotoxicants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号