首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The morphology of micron-sized polystyrene particles crosslinked with a urethane acrylate crosslinker was studied with different concentrations of urethane acrylate and medium solvency by means of simple dispersion polymerization. The urethane acrylate employed as a crosslinker showed an excellent effect on maintaining the monodispersity of the polystyrene particles at a moderate crosslinker concentration (to about 5 wt%) in terms of the monomer-swellable surface of primary particles. By enhancing the medium solvency, the amount of urethane acrylate incorporated was increased, while the monodispersity of the final particles was maintained. It was believed that the increase in solvency on adding xylene to ethanol solution helped the diffusion of the styrene monomers into the primary particles. At high concentration of urethane acrylate, however, nonspherical particles, ellipsoidal or egg-like singlets and asymmetric doublets, were observed. The increased crosslinking density seemed to repel the styrene monomers during particle growth. Received: 30 June 1998 Accepted in revised form: 9 September 1998  相似文献   

2.
Highly monodisperse polymethylmethacrylate (PMMA) microparticles crosslinked with carboxylic group-containing urethane acrylates (CUA) were produced by simple dispersion polymerization in methanol solution. In contrast to conventional crosslinkers, the CUA employed as a crosslinker was excellent for maintaining the monodispersity of PMMA microparticles even at moderate crosslinker concentrations (to about 5 wt%). It was believed that the CUA helped form the monomer-swellable surface of primary particles, because of the structurally long tetramethylene oxide groups in the molecule. Carboxylic groups in the molecular backbone resulted in larger primary particles by increasing the solubility of the monomer mixture in the medium. Owing to these larger primary particles, the crosslinked PMMA particles showed lower polymerization rates than the linear ones during particle growth. However, at high CUA concentrations (about 10 wt%), bimodal distributions were observed. This was attributed to the high crosslinking density of the primary particle surfaces. Therefore, monomer diffusion toward the polymer phase was restricted, resulting in more favorable secondary nucleation in the medium. Received: 12 May 1998 Accepted: 19 August 1998  相似文献   

3.
New flame-retardant nano/micro particles of sizes ranging between 0.06 ± 0.01 and 1.70 ± 0.23 μm were formed by dispersion polymerization of the pentabromobenzyl acrylate monomer (PBBA) in methyl ethyl ketone as a continuous phase. The effect of various polymerization parameters, e.g., monomer concentration, initiator type and concentration, stabilizer concentration and crosslinker monomer concentration, on the size, size distribution and polymerization yield of the produced poly(pentabromobenzyl acrylate) particles has been elucidated. Poly(pentabromobenzyl acrylate)/polystyrene (PPBBA/PS) nano/micro blends of the contents of different PPBBA particles were prepared by mixing the PPBBA particles with a PS solution in methylene chloride, followed by evaporation of the methylene chloride from the mixture. The thermal stability of these blends was also studied.  相似文献   

4.
Monodisperse micron-sized polystyrene particles crosslinked using urethane acrylate were produced by dispersion polymerization in ethanol solution and the effect of the crosslinked network structure on the polymerization procedure was studied. The influences of the concentrations of the initiator and urethane acrylate on the particle diameter (D n), the particle number density (N p), and the polymerization rate (R p) were found to obey the approximate relationships D n ∝ [initiator]0.43 [urethane acrylate]0.05, N p ∝ [initiator]−1.30 [urethane acrylate]0.19, and R p ∝ [initiator]0.24 ± 0.02. The power-law dependence of D n and N p on the initiator concentration showed a similar trend to that of linear polystyrene reported in the literature. Especially, it was found that urethane acrylate does not have a serious effect on D n and N p of the particles produced. The dependence of R p on the initiator concentration was observed to be higher than that of linear polystyrene, suggesting that there is still competition between heterogeneous polymerization and solution polymerization because of the crosslinked network structure of the primary particle. Received: 1 April 1999 Accepted in revised form: 29 June 1999  相似文献   

5.
Narrow disperse microparticles are formed by dispersion polymerization of commercial divinylbenzene in acetonitrile or ethanol solution in the presence of 2,2′-azobis(2-methylpropionitrile) initiator and polyvinylpyrrolidone stabilizer. The particles have average diameters between 1 and 9 μm depending on monomer concentration, solvent, and temperature. While the smaller particles are relatively smooth, surface texture increases with diameter to give popcorn shapes at 9 μm diameter. High crosslinker concentration is shown to be essential for particle formation. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
Polystyrene template microspheres of 1.4 ± 0.1 μm were prepared by dispersion polymerization of styrene in a mixture of ethanol and 2‐methoxy ethanol. These template particles were then swelled at room temperature in a single step with emulsion that was prepared in sodium dodecyl sulfate aqueous solution from a swelling solvent (dibutyl phthalate) containing the initiator (benzoyl peroxide) and monomer(s) (chlormethylstyrene, divinylbenzene, or ethylene dimethacrylate). Composite uniform particles composed of the template polystyrene and noncrosslinked or crosslinked polychloromethylstyrene were prepared by polymerizing the monomer(s) within the swelled particles at 73 °C. Crosslinked uniform polychloromethylstyrene particles of higher surface area were formed by dissolving the template polystyrene polymer of the composite particles. The influence of various reaction parameters, such as dibuthyl phthalate concentration, chloromethylstyrene concentration, crosslinker type and concentration, and so forth on the molecular weight, size, size distribution, shape, morphology, surface area, and decomposition temperature of the particles was investigated. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1342–1352, 2002  相似文献   

7.
Poly(methyl methacrylate) particles having hollow structures were produced by water-in-oil-in-water (W/O/W) emulsion polymerization where sorbitan monooleate (Span80) was used as a primary surfactant and sodium laurylsulfate and Glucopen (APG, polypeptide derivative) were used as secondary surfactants. Urethane acrylate having a molecular structure with a hard segment in the molecular backbone, a long soft segment in the middle, and vinyl groups at both ends was employed as a reactive viscosity enhancer. At low concentration of urethane acrylate, only a few particles contained a void in the polymer phase. However, as the concentration of urethane acrylate increased, the number of the particles containing the void increased. This was because urethane acrylate increased the viscosity of the monomer mixture and helped to form the stable W/O/W emulsion droplets, which possibly restricted droplet coalescence during emulsion polymerization. Moreover, at high concentration of urethane acrylate (above 7 wt%), multi-hollow-structured particles were obtained. It is believed that the increase in the lyophilicity of the monomer mixture caused by urethane acrylate led to stronger interfacial activity of the primary surfactant (Span80) and finally resulted in many internal aqueous droplets. Received: 31 July 1998 Accepted: 13 October 1998  相似文献   

8.
 Recently, we found that “golf ball”-like polystyrene (PS)/polybutyl acrylate (PBA) composite particles could be produced by seeded emulsion polymerization of butyl acrylate (BA) with PS seed particles. In this article, the effects of the polymerization temperature, BA monomer concentration, and the presence of 1-octanol, which is a good solvent for PBA and a poor solvent for PS in the polymerization, on the morphology was studied. Received: 25 February 1997 Accepted: 4 October 1997  相似文献   

9.
Core polystyrene microspheres of narrow size distribution were prepared by dispersion polymerization of styrene in a mixture of ethanol and 2-methoxy ethanol. Uniform polyglycidyl methacrylate/polystyrene core-shell micrometer-sized particles were prepared by emulsion polymerization at 73 degrees C of glycidyl methacrylate in the presence of the core polystyrene microspheres. Core-shell particles with different properties (size, surface morphology and composition) have been prepared by changing various parameters belonging to the above seeded emulsion polymerization process, e.g., volumes of the monomer glycidyl methacrylate and the crosslinker monomer ethylene glycol dimethacrylate. Magnetic Fe(3)O(4)/polyglycidyl methacrylate/polystyrene micrometer-sized particles were prepared by coating the former core-shell particles with magnetite nanoparticles via a nucleation and growth mechanism. Characterization of the various particles has been accomplished by routine methods such as light microscopy, SEM, FTIR, BET and magnetic measurements.  相似文献   

10.
The solubility behavior of well‐defined poly(methyl acrylate) homopolymers as well as polystyrene‐block‐poly (methyl acrylate) block copolymers is discussed in this contribution. A solubility screening in ethanol–water solvent mixtures was performed in a high‐throughput manner using parallel turbidimetry revealing upper critical solution temperature behavior for poly(methyl acrylate). Moreover, the self‐assembly behavior of the block copolymers into micellar structures was investigated by dynamic light scattering (DLS), transmission electron microscopy (TEM), and cryo‐TEM revealing upper critical solution temperature switchability of the micelles, which was evaluated by DLS at different temperatures. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
The synthesis of several newly available diacrylate crosslinking agents derived from hydroxy functional acrylates and bisepoxides is described. These crosslinking agents are synthesized via the acid catalyzed addition of hydroxyl-containing acrylate monomers to bisepoxides derived from bisphenol-A and its hexafluoropropyl analog. These materials are generated in an excess of the acrylate monomer and the reaction mixtures are then converted directly to highly crosslinked materials. The alcohol functional monomers include hydroxyethyl methacrylate (HEMA) and the butyl and ethyl esters of (α-hydroxymethyl)acrylic acid. The latter are especially interesting for several reasons. First, they are readily available through the addition of the corresponding acrylate to formaldehyde. Second, these monomers react with the bisepoxides to give all-ether-linked connecting groups, in conrast to HEMA which yields a molecule with both ether and ester linkages between the two acrylate units. Third, the monomers are very different in solubility from HEMA and the polymers display very different chemical and physical properties. For example, while the crosslinked HEMA polymers are swellable in water, those of the (α-hydroxymethyl)acrylates are insoluble in water but swellable in organic solvents such as chloroform. All monomers, crosslinking agents, and crosslinked polymers were characterized by FT-IR, solution or solid state 13C-NMR spectroscopy, and thermal analysis.  相似文献   

12.
 The procedure of nucleated particle formation and particle growth in dispersion polymerization was studied with the intention of understanding the production of monodisperse polystyrene particles cross-linked with urethane acrylate (UA). The time required for the formation of primary particles was determined exactly from the turbidity measurement of the reaction mixture with the polymerization time. It could be found that differing from conventional divinyl cross-linkers, such as divinylbenzene, UA had a boundary concentration where the association and coagulation of preformed nuclei with other oligomers and/or nuclei effectively took place until the primary particle formed. Similarly to linear polystyrene particles, the particle number density of the primary particles cross-linked with UA remained constant to the final particles. This observation verifies the suggestion that the primary particles cross-linked with UA readily absorbed the monomers from the medium during the stage of particle growth. Received: 31 August 1999 Accepted: 7 January 2000  相似文献   

13.
Water-soluble microgels made by radical polymerization in solution   总被引:3,自引:0,他引:3  
The goal of this study was to prepare and characterize water-soluble, high-molecular-weight microgels. N-Vinylpyrrolidone (NVP) and vinylacetate (VAc) in combination with cross-linkers diethylene glycol dimethacrylate (DEGDMA) or diethylene glycol divinyl ether (DEGDVE) were copolymerized in solution to high conversion. Polymerization was performed in different solvents or solvent mixtures, with solubility parameters ranging from 16.0 to 47.6 J0.5cm−1.5, and at different initial monomer concentrations. In solvent mixtures with solubility parameters of 20–40 J0.5cm−1.5, macrogelation did not occur below a critical gelation concentration and microgels were formed. For NVP/VAc/DEGDMA (85.0/10.0/5.0 wt%, 84.8/12.9/2.4 mol%) and NVP/VAc/DEGDVE (85.0/10.0/5.0 wt%, 84.8/12.9/3.5 mol%) the critical gelation curves were determined. The molecular weights of the microgels depend on the solvent systems and the initial monomer concentration. Microgels of high molecular weight but low cross-linking density gave aqueous solutions with high viscosities. Increasing the amount of cross-linker to 20 wt% gave high-molecular-weight microgels with lower solution viscosity. Microgels with a monomer composition NVP/VAc/DEGDVE (65.0/15.0/20.0 wt%, 66.2/19.5/14.3 mol%) were prepared in ethanol at different monomer concentrations (3–20 wt%). The molecular weights were determined by a combination of field-flow fractionation and light scattering. By increasing the initial monomer concentration, the molecular weight and the molecular-weight distribution as well as the intrinsic viscosity increased. The exponent of the Mark–Houwink equation was 0.26. Received: 19 March 2001 Accepted: 20 July 2001  相似文献   

14.
Kinetic studies on the polymerization of n-butyl acrylate and n-octadecyl acrylate in toluene at 70°C with benzoyl peroxide as initiator are reported. High monomer orders of 1.55 and 1.75 were obtained for n-butyl and n-octadecyl acrylates, respectively. Though the initiator order in butyl acrylate polymerization was 0.5, the octadecyl acrylate polymerization showed less than square root initiator order. The activation energy for the polymerization of both the acrylates was determined. Autoacceleration was found even at low conversions. The autoacceleration was influenced by both monomer and initiator concentration. Molecular weight data was presented in support of the gel effect. © 1992 John Wiley & Sons, Inc.  相似文献   

15.
 Micron-sized monodispersed polystyrene (PS)/poly(n-butyl methacrylate) composite particles were produced as follows. First, 1.77 μm-sized monodispersed PS seed particles produced by dispersion polymerization were dispersed in ethanol/water (1/2, w/w) medium dissolving poly(vinyl alcohol) as a stabilizer. n-Butyl methacrylate (BMA) monomer dissolving benzoyl peroxide initiator was emulsified in ethanol/water (1/2, w/w) solution of sodium dodecyl sulfate as emulsifier with ultrasonic homogenizer, and the BMA monomer emulsion was mixed with the PS seed emulsion. The PS seed particles absorbed with a large amount of BMA (about 150 times weight of the seed particles) for 2 h to about 10 μm in diameter while keeping good monodispersity and BMA droplets disappeared finally. The seeded polymerization was carried out at 70 °C after a certain amount of water was added to depress the redissolving of BMA from the swollen particles into the medium by raising from room temperature to the polymerzation temperature. Received: 21 February 1996 Accepted: 4 September 1996  相似文献   

16.
Castor oil (CO) based hyperbranched urethane acrylates (HBUAs), namely C10-IH and C20-IH, were synthesized by modifying the hydroxyl groups of first (C10)- and second (C20)-generation of CO-based hyperbranched polyesters with isocyanate-bearing semi-adducts (IPDI-HEA). Herein, the C10 and C20 polyesters were prepared using the renewable CO as a B3 core molecule and dimethylolpropionic acid as an AB2 monomer via a pseudo-one-pot condensation procedure. For comparison, a CO-based urethane acrylate (CO-IH) was synthesized by directly modifying the hydroxyl groups of CO with IPDI-HEA. The structure-property relationship of the UV-cured films was investigated in detail. Consequently, the number of terminal urethane acrylates greatly influenced their final properties. The tensile strength of the C20-IH based UV-cured sample could be improved by 129% in comparison with the CO-IH based sample, and its pencil hardness reached up to 7H. Furthermore, the chemical resistance tests and the morphology study proved that the C20-IH based UV-cured coatings exhibited excellent chemical stability and superb microstructure. These improvements can be attributed to the unique oligomer architecture that combined the structural features of hyperbranching, castor oil chains and multiple urethane acrylates.  相似文献   

17.
Two multifunctional aromatic urethane acrylates, based on 2, 4‐toluene diisocyanate (2, 4‐TDI), β‐hydroxyethyl arcylate (HEA), and synthetic multifunctional hydroxyl compounds, were synthesized by classical condensation reaction. FTIR was used to monitor the process of the reaction. The photopolymerization kinetics of the urethane acrylates with different photoinitiators was studied by Real‐Time Infrared Spectroscopy. The results indicated that different from the commercial urethane acrylate CN 975, the synthetic multifunctional urethane acrylates could be efficiently initiated by BP without the addition of any co‐initiators as they have tertiary amine structures. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Monodisperse copolymer particles from 1.1 to 2.6 μm in diameter were obtained by unseeded batch dispersion copolymerization of styrene and butyl acrylate in an ethanol–water medium. A two-level factorial design using bottle polymerizations was initially carried out including the following variables: stabilizer concentration, initiator concentration, polarity of the dispersion medium, initial monomer concentration, and temperature. Once the region of experimental conditions in which monodisperse latexes can be prepared was identified, further effort was devoted to analyze the effect of other variables. It was found that the temperature at which nucleation occurs and the evolution of the temperature after the onset of nucleation were critical to obtain monodisperse particles. The particle size increased with increasing initial monomer concentration and ethanol–water weight ratio, and decreasing stabilizer concentration. A minimum quantity of emulsifier was necessary to avoid coalescence of particles and to obtain monodisperse particles. © 1996 John Wiley & Sons, Inc.  相似文献   

19.
The characteristics of poly(ethylene glycol) (PEG)–acrylate hydrogel networks were investigated as a function of the ethanol–water solvent composition during free‐radical crosslinking copolymerization. Macromonomer (88% ω‐methoxy‐PEG–acrylate and 10% ω‐phenoxy‐PEG–acrylate) and crosslinker (2% PEG–diacrylate) concentrations were kept constant. As the copolymerization progressed, the polymer solution in 100% ethanol became increasingly turbid, indicating the development of a heterogeneous network structure. In 100% water, however, the initially turbid polymer solution became increasingly transparent as the crosslinking copolymerization progressed. All the gels were optically clear upon equilibration in water. Kinetic studies, with attenuated total reflectance‐infrared, showed a long induction period, along with a lowered reaction rate, in 100% ethanol, and a decrease in conversion with an increase in ethanol content. These results agree with the UV analysis of the sol fractions, which indicated an increase in the amounts of unreacted PEG–acrylates with an increase in the ethanol content. The gels which were formed with a high ethanol concentration exhibited lower Young's modulus and higher swelling ability, suggesting that the network structure was significantly affected by the solvent composition during free‐radical crosslinking copolymerization. From the stress–strain and swelling experiments, the Flory–Huggins interaction parameter was evaluated. The creep characteristics of the hydrogels were modeled with two Kelvin elements. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2677–2684, 2002  相似文献   

20.
Monodisperse polyglycidyl methacrylate (PGMA) microsphere particles crosslinked with divinylbenzene crosslinker were prepared by single-stage dispersion copolymerization in ethanol medium. 1 wt% of DVB was successfully incorporated due to the costabilizing effect of GMA as a surface-active monomer. This behavior may indicate that the fast formation of stable primary particle leads to monodispersity. The average particle sizes and the particle size distributions increased with the DVB crosslinker concentration. The effects of two different variables (initiator concentration, crosslinker concentration) on the rate of dispersion copolymerization have been investigated. With the initiator concentration, the polymerization procedure mainly depended on the dual natures of general dispersion polymerization, in the crosslinked state. Up to 1 wt% DVB, the particle growth was controlled by the monomer diffusion from the continuous phase into the particle phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号