首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Analytical letters》2012,45(5):844-855
Ag@SiO2 nanoparticles with the core-shell structure have been prepared, of which the silver core was about 50 nm and the thickness of silica shell was approximately 10 nm. In slightly alkaline aqueous solution (pH = 8), through electrostatic force between cationic polymer PDDA (i.e., poly-diallyldimethylammonium chloride) and the obtained Ag@SiO2 nanoparticles, PDDA molecules were fixed on the surface of Ag@SiO2 nanoparticles. The prepared Ag@SiO2/PDDA nanoparticles have both rich positive surface charges and rich micro-holes of silica shell. Based on micro-hole adsorption, the small molecule FITC (i.e., fluorescein isothiocyanate) marking on IgG (i.e., immunoglobulin) was adsorbed into the rich microholes of silica shell; at the same time, the negatively charge macromolecule IgG marked by FITC was firmly fixed on the rich positive charges surface of Ag@SiO2/PDDA nanoparticles by electrostatic interaction. And then, Ag@SiO2/PDDA/IgG-FITC fluorescent nanoparticles with the SPR fluorescence enhancement were prepared. The shell-type SiO2/PDDA/IgG-FITC nanoparticles were obtained by dissolving the silver core in the prepared core-shell Ag@SiO2/PDDA/IgG-FITC nanoparticles by using H2O2. Compared with the shell-type nanoparticles, the fluorescence intensity of Ag@SiO2/PDDA/IgG-FITC was enhanced 1.7 times. The prepared Ag@SiO2/PDDA/IgG-FITC nanoparticles have both SPR-based fluorescence enhancement ability and the surface distributing IgG–based obvious advantages including good biocompatibility and easy marking with other biomolecules.  相似文献   

2.
Water-soluble PVP-stabilized hexagonal-phase La0.78Yb0.20Er0.02F3 nanocrystals (NCs) were synthesized by hydrothermal method. The NCs were coated with a very thin silica shell, and amino groups were introduced to the surface of silica shells by copolymerization of 3-aminopropyl(triethoxy)silane. The core/shell NCs can be dispersed in ethanol and water to form stable colloidal solution. The transmission electron microscopy (TEM), selected area electron diffraction (SAED), powder X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR) were used to characterize the core/shell materials. In addition, the green up-conversion fluorescence mechanism of La0.78Yb0.20Er0.02F3/SiO2 NCs was studied with a 980-nm diode laser as excitation source. The water solubility, small core/shell particles size, and well colloidal stability mean the green up-conversion fluorescence NCs have potential applications in bioassay.  相似文献   

3.
Summary The retention order of aniline and phenol on hydroxylated silica gel surface is reversed with the increase of the concentration of a polar component in the eluent. At minor (about 1%) concentrations of isopropanol in hexane aniline emerges first followed by phenol, the elution order being reversed with the increase of isopropanol concentration above 2%. The same behaviour is observed for silica gel with chemically bonded C16 n-alkyl groups and for porous styrene-divinylbenzene copolymer. In all these cases the retention depends to a great extent on substance-eluent intermolecular interactions. At high isopropanol concentration in hexane the rise of column temperature changes the retention order of aniline and phenol on silica gel with hydroxylated surface since the association of these molecules with isopropanol as well as the isopropanol adsorption weaken as the temperature increases.  相似文献   

4.
Hydrophilic molecularly imprinted microspheres (MIP@SiO2) for the adsorption of water‐soluble molecules in real aqueous samples were successfully synthesized. In this strategy, a molecular imprinted polymer (MIP) was encapsulated in the hollow core of hollow mesoporous silica (HMS) particles via a ‘ship‐in‐a‐bottle’ process. As the HMS shell contains plenty of Si‐OH groups, the as‐prepared microspheres proved to be hydrophilic and could be well dispersed in water. On the other hand, the MIP encapsulated in the HMS could specifically recognize small molecules with good binding efficiency through the mesoporous silica shell. Binding experiments in real aqueous solutions showed that the MIP@SiO2 composites have excellent recognition ability for specific molecules. Thus, MIP@SiO2 are highly promising alternatives to biological receptors with great potential for many analytical applications, such as environmental, food, and clinical analyses and other areas.  相似文献   

5.
We demonstrate a facile wet chemical approach for fabricating spherical metal/metal‐oxide core@mesoporous silica shell hybrid nanoparticles with different core and shell thicknesses. Vertically aligned mesoporous silica (mSiO2) shells were fabricated over the pre‐synthesized spherical SiO2 nanoparticles through a three‐step strategy: 1) synthesis of core materials, 2) covering the core with an organic–inorganic composite layer, and 3) removing the organic template through calcinations in air. The mechanisms of hybrid structure formation are proposed. The multifunctional nature of the hybrid structures could be induced by incorporating guest ions/molecules, such as Ag, Mn, and TiO2, into the pores of an mSiO2 shell. Mn and TiO2 cluster‐ incorporated composite structures have been tested to be antioxidizing agents and effective photocatalysts through electron spin resonance, radical scavenging tests, and the photocatalytic degradation of rhodamine B. The possibility of incorporating several hetero‐element guest clusters in these mesoporous composite particles makes them highly attractive for multifunctional applications.  相似文献   

6.
《Electroanalysis》2018,30(8):1604-1609
A novel approach to high loaded Pt core/carbon shell catalyst synthesis from a Pt‐aniline complex was reported. The Pt‐aniline complex was successfully synthesized by irradiating an ultrasound to the hexachloro platinic acid and aniline monomer mixture. The highly viscous nature of aniline leads to reproducible hexagonal plate like Pt‐aniline complex crystals. The chemical composition of the Pt‐aniline complex was identified as [PtCl2(C6H5NH2)2] with the help of NMR, XPS, HR ESI‐MS, and TGA analyses. Furthermore, the Pt‐aniline hexagonal plates were sintered at various temperatures like 400 °C, 500 °C, and 700 °C for an hour. This formed the highly dispersed carbon covered Pt nano particles with loading of 80.1 wt %, 81.3 wt %, and 83.4 wt % for HP‐4, HP‐5, and HP‐7, respectively. After supporting it on Vulcan XC‐72, Pt core/carbon shell pyrolyzed at a low temperature showed excellent performance in methanol oxidation reaction. In addition, Pt core/carbon shell prepared at a high temperature revealed excellent tolerance to methanol.  相似文献   

7.
A new and simple procedure to enhance the fluorescence of analytes on the surfaces of a solid substrate is demonstrated based on Ag@SiO2 nanoparticles. Two kinds of silver–silica core–shell nanoparticles with shell thicknesses of around 3 and 15 nm have been prepared and used as enhancing agents, respectively. By simply pipetting drops of the enhancing agents onto substrate surfaces with Rose Bengal monolayers, an enhancement of about 27 times, compared with the control sample, is achieved by using the Ag@SiO2 nanoparticles with shells of about 3 nm, whereas an enhancement of around 11.7 times is obtained when using those with thicker shells. The effects of shell thickness and surface density of the enhancing agents on the enhancement have been investigated experimentally. The results show that this method can be potentially helpful in fluorescence‐based surface analysis.  相似文献   

8.
This paper describes a method for producing silica particles containing multiple quantum dots (QD/SiO2), a method for surface-modifying the particles with poly(ethylene glycol) (QD/SiO2/PEG), and an in vivo fluorescence imaging technique using colloid solution of the QD/SiO2/PEG particles. The QDs used were ZnS-coated CdSexTe1?x nanoparticles surface-modified with carboxyl groups, and had an average size of 10.3 ± 2.1 nm. The QD/SiO2 particles were fabricated by performing sol–gel reaction of tetraethyl orthosilicate using NaOH as a catalyst in the presence of the QDs. The produced particles formed core–shell structure composed of multiple QDs and silica shell, and had an average size of 50.2 ± 17.9 nm. Surface-modification of the QD/SiO2 particles with PEG, or PEGylation of the particle surface, was performed by using methoxy polyethylene glycol silane. Fluorescence of QD colloid solution was not quenched even through the silica-coating and the PEGylation. Tissues of a mouse could be imaged by injecting the concentrated colloid solution into it and measuring fluorescence intensity emitted from the tissues.  相似文献   

9.
Nonradiative deactivation processes of excited aniline and its derivatives in aqueous solution were investigated by steady-state and time-resolved fluorescence measurements to reveal characteristic solvent effects of water on the relaxation processes of excited organic molecules. The magnitude of nonradiative rate (knr) of excited aniline derivatives increased significantly in water compared to that in organic solvents (cyclohexane, ethanol, and acetonitrile). The fluorescence lifetime measurements in organic solvent/H2O mixed solvents suggested that the fluorescence quenching in water was not due to exciplex formation but due to interactions with a water cluster. From temperature effect experiments on the fluorescence lifetime and quantum yield of aniline, N-methylaniline, and N,N-dimethylaniline, the apparent activation energies for the nonradiative deactivation rate in water were determined as 21, 30, and 41 kJ mol-1, respectively. Upon substitution of hydrogen atoms in the aromatic ring of aniline derivatives for deuterium atoms resulted in normal deuterium isotope effect in cyclohexane, i.e. knr decreased by deuterium substitution, while in water the same deuterium substitution led to an increase in knr (the inverse isotope effect). The inverse isotope effects implied that a direct internal conversion to vibrationally higher excited states in the electronically ground state is not a dominant mechanism but the transition to a close-lying energy level, e.g. the relaxation to charge transfer to solvent (ctts) state, would be associated with the quenching mechanism in water.  相似文献   

10.
In this study, silica/polystyrene/polyaniline (SiO2/PS/PANI) conductive composite particles were synthesized by four sequential reactions. The nanosized SiO2 particles were synthesized from tetraethoxysilane (TEOS) by a sol–gel process with water as the solvent medium, followed by a surface modification with triethoxyvinylsilane; then the surface modified SiO2 particles were used as seeds to synthesize SiO2/PS composite particles with soapless seeded emulsion polymerization. Finally, the SiO2/PS particles were used as seeds to synthesize the SiO2/PS/PANI conductive composite particles. The sol–gel process of SiO2, the effect of surface modification, and several other factors that influenced polymerization of styrene in the soapless seeded emulsion polymerization will be discussed. Either potassium persulfate (KPS) or 2,2′‐azobis(isobutyramidine) dihydrochloride (AIBA) was used as the initiator to synthesize the uniform SiO2/PS particles successfully, and the cross‐section morphology of the SiO2/PS particles was found to be of a core–shell structure, with SiO2 as the core, and PS as the shell. The SiO2/PS particles were well dispersed in many organic solvents. In the following step to synthesize SiO2/PS/PANI conductive composite particles, sodium dodecyl sulfate (SDS) played an important role, specifically, to absorb aniline onto the surfaces of the SiO2/PS particles to carry out the polymerization of aniline over the entire surface of the particles. The conductivity of the SiO2/PS/PANI composite particles approached that of semiconductive materials. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 342–354, 2005  相似文献   

11.
《中国化学快报》2023,34(2):107472
The unique structure of fluorescent proteins in which the fluorophore is encapsulated by the protein shell to restrict rotation and emit light inspired the screening of chromophores that selectively bind to biomolecules to generate fluorescence. In this paper, we report a curcuminoid-BF2-like fluorescent dye N-BF2 containing 4-dimethylaniline as an electron-donating group. When this dye is combined with HSA or BSA, the fluorescence is enhanced 90/112-fold, and the fluorescence quantum yield increases from <0.001 to 0.16/0.19. Such a large change in fluorescence enhancement is due to the encapsulation of N-BF2 in the protein cavity by HSA/BSA, which inhibits the intramolecular rotation of the aniline moiety caused by charge transfer after the fluorophore is excited by light. N-BF2 has fast and strong binding to HSA or BSA and was found to be reversible in solution and intracellularly. Since N-BF2 also has the ability to target lipid droplets, the complex of N-BF2/HSA realizes the regulation of reversible lipid droplet staining in cells.  相似文献   

12.
Gd3+‐aggregated gold nanoclusters (AuNCs) encapsulated by silica shell (Gd3+‐A‐AuNCs@SiO2 NPs) were strategically designed and prepared. The as‐prepared nanoparticles exhibit aggregation‐enhanced fluorescence (AEF), with an intensity that is up to 3.8 times that of discrete AuNCs. The clusters served as novel nanoprobes for in vitro and in vivo multimodal (fluorescence, magnetic resonance, and computed X‐ray tomography) cancer imaging  相似文献   

13.
Summary The lipophilicity of aniline and 36 ring-substituted aniline derivatives was determined by reversed-phase thin-layer chromatography using NaCl, KCl, MgCl2, CaCl2, AlCl3 and tetramethyl-ammoniumhydroxide, either adsorbed on the silica surface before impregnation or added to the eluent. In most cases the salts decreased the retention power of silica resulting in enhanced mobility of the aniline derivatives. The monovalent cations had the lowest, while AlCl3 and tetramethylammoniumhydroxide had the highest impact on selectivity. This phenomenon can be explained by the different ion charges. The correlation between the RM values and the partition coefficient between n-octanol: water were in all cases inferior to those obtained in salt-free systems this means that the presence of salts modifies differently the lipophilicity of aniline derivatives.  相似文献   

14.
A micrometric silica modified with perylene derivative (SiO2–TES) has been prepared by hydrolysis–condensation reactions between silica and N,N’-bis-(3-triethoxysilylpropyl)-perylene-tetracarboxyldiimide (P-TES) and utilized as filler in LLDPE films together with a compatibilizer. Spectroscopic analyses on SiO2–TES confirmed the grafting of P-TES on silica, while its amount was determined by thermogravimetric analysis. Solid state NMR provided information about the structure of silicon atoms involved in the condensation of SiO2 and P-TES that resulted mainly in silicon atoms grafted with bi-dentate anchorages.UV–Vis and fluorescence analyses carried out on P-TES showed the ability of the dye to generate J-type aggregates in apolar solvents. The same analyses on SiO2–TES revealed the presence of both isolated and aggregated dye molecules grafted on silica surface, while on polymeric dispersions of SiO2–TES, they have shown only the presence of P-TES aggregates grafted to silica.Thanks to the direct correlation between optical properties (obtained both by UV–Vis and by fluorescence analyses) and the chemical environment of composites, the luminescent silica SiO2–TES could be used to estimate the filler dispersion extent in different microcomposite polymer materials.  相似文献   

15.
The steady-state fluorescence quenching of novel coumarin derivatives; 4-(2, 6-dibromo-4-methyl-phenoxymethyl)-benzo[h]chromen-2-one [DMB] and 6-methoxy-4-p-tolyoxymethyl-chromen-2-one [TMC] has been studied in toluene, benzene, dioxane, acetonitrile and tetrahydrofuran [THF] using aniline as a quencher at room temperature with a view to understanding the role of diffusion in the quenching mechanism. The probability of quenching per encounter (p) is calculated in all the solvents. Further, an activation energy for quenching (E a) was estimated using the values of p and the literature values of activation energy for diffusion (E d). The magnitudes of these parameters indicate that the fluorescence quenching of these molecules by aniline is not solely due to the material diffusion but there is also a contribution of an activation energy.  相似文献   

16.
Metal‐enhanced processes arising from the coupling of a dye with metallic nanoparticles (NPs) have been widely reported. However, few studies have simultaneously investigated these mechanisms from the viewpoint of dye fluorescence and photoactivity. Herein, protoporphyrin IX (PpIX) is grafted onto the surface of silver core silica shell NPs in order to investigate the effect of silver (Ag) localized surface plasmon resonance (LSPR) on PpIX fluorescence and PpIX singlet oxygen (1O2) production. Using two Ag core sizes, we report a systematic study of these photophysical processes as a function of silica (SiO2) spacer thickness, LSPR band position and excitation wavelength. The excitation of Ag NP LSPR, which overlaps the PpIX absorption band, leads to the concomitant enhancement of PpIX fluorescence and 1O2 production independently of the Ag core size, but in a more pronounced way for larger Ag cores. These enhancements result from the increase in the PpIX excitation rate through the LSPR excitation and decrease when the distance between PpIX and Ag NPs increases. A maximum fluorescence enhancement of up to 14‐fold, together with an increase in photogenerated 1O2 production of up to five times are obtained using 100 nm Ag cores coated with a 5 nm thick silica coating.  相似文献   

17.
近年来,溶胶-凝胶技术在制备无机-有机复合材料中的应用越来越广泛犤1~6犦。该方法既可以制得具有很好机械性能和光学均匀性的块体材料,也可以制得薄膜和粉体材料。有机光学活性物质在无机基质中的存在状态及其化学环境,有机分子之间及有机分子与无机基质之间的相互作用对材料的热稳定性、光学特性以及实际应用影响极大犤7~10犦。研究无机基质的微环境与有机光学活性分子之间的相互作用,对于复合材料的组成、性能、制备工艺的优化设计和实际应用至关重要。但是,目前有关这方面的系统研究报道很少。本文在硅溶胶中分别掺入了一…  相似文献   

18.
Ultrasonically assisted in situ emulsion polymerization was used to prepare electrically conducting copolymer poly(aniline‐co‐p‐phenylenediamine) [poly(Ani‐co‐pPD)] and silica (SiO2) nancomposites. This approach can solve problems in the dispersion and stabilization of SiO2 nanoparticles in the copolymer matrix. It was found that the aggregation of SiO2 nanoparticles could be reduced under ultrasonic irradiation. Scanning transmission electron microscopy (STEM) confirmed that the resulting poly(Ani‐co‐pPD)/SiO2 nanocomposite particles were spherical in shape, in which SiO2 nanoparticles were well dispersed. The comonomer molecules were absorbed on the surface of SiO2 particles and then polymerized to form core–shell nanocomposite. The incorporation of SiO2 in the nanocomposite was supported by Fourier transform infrared spectroscopy (FT‐IR). UV‐visible spectra of the diluted colloid dispersion of nanocomposite particles were similar to those of the neat copolymer. Conductivity of nanocomposites was higher than the value obtained for the neat copolymer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Aniline/silica sol-gel material was obtained. The aniline was immobilized on the silica surface using chloropropyltrimethoxysilane as bridge reagent. The base activator NaH was used to produce a fast SN2 reaction between the base and the alkylorganosilane. The resulting modified silica was characterized by elemental analysis and infrared spectroscopy using an oven cell. The organic coverage on the surface was proportional to the organic precursor concentration. The aniline/silica materials are thermally stable up to 300°C, in high vacuum.  相似文献   

20.
A novel super acidic magnetic nanoparticle as catalyst was successfully synthesized. The preparation of this dendrimer sulfonic acid functionalized γ‐Fe2O3 magnetic core‐shell silica nanoparticles as a new recoverable and heterogeneous nanocatalyst was described. The new catalyst was characterized using various techniques such as scanning electron microscopy (SEM), energy dispersive spectrum (EDS), and thermo gravimetric synthesis (TGA). Moreover, we have examined the catalytic activity of the catalyst for one‐pot, efficient and facile synthesis of 2‐hydroxy‐1,4‐naphthoquinone derivatives via a three‐component condensation reaction of 2‐hydroxynaphthalene‐1,4‐dione, aromatic aldehydes and aniline derivatives. High yields of products, short reaction times, waste‐free, mild, ambient and solvent‐free reaction conditions are advantages of this protocol. Also, the catalyst can be easily recovered by an external magnetic and reused several times without significant loss of its catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号